We simulate the cell cycle as a 12 state system which begins in a synchronous state of G1 cells. Let the cell number density n(t,k) at time t be defined as the total number of cells in the population at time t, N(t), multiplied by the probability p(t,k) that a cell is in state k  (an integer from 1 to 12).   Thus, n(0,1) = N(0), i.e. all of the cell number density is initially in state 1.  As time progresses, the cell number density in state 1 diffuses into higher numbered states and doubles as it passes through state 12.  The R codes given below simulate this. The first block of code defines the state derivative vector as the system matrix A multiplied by the current state, i.e. as
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.  The second block defines A and passes it (as a parameter) to the integration routine lsoda. The third block creates a 3x6 array of plots filled one at a time using the plot function. 
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In these plots, to the right of each state distribution plot is a DNA content distribution plot, computed with S phase states linearly interpolated between a content of 1 for G1 cells and a content of 2 for G2 and M phase cells. The first DNA content peak is comprised of G1 cells, the second peak, corresponding to twice the DNA content of the first peak, contains cells in G2 and M phases, and S-phase cells with intermediate DNA content appear between these two peaks. Noise was emulated as convolutions of DNA content with a Gaussian ((=.1) kernel.  These plots show how a single cell known to be in state 1 at t = 0 becomes an asynchronous population of 6.2 cells (on average) in 36 hours; by 36 hours the cell number density has reached its asynchronous steady state, namely, an exponential distribution (solid line) across cell states. As is observed, for exponentially growing cell distributions the G1 peak dominates the G2 peak.
Let us now turn to a data driven example. Included in the TFCT R package is flow data (Yuji Seo, unpublished) in which cells synchronized using aphidicolin (a G1-S blocking agent) are released into the cell cycle at t=0 hours and serum starved at 8 hours. These data were least squares fitted to a cell cycle clock model with: 1) six additional S-phase states to avoid curve fit choppiness; 2) an independent S-phase to G1 transition rate ratio parameter, estimated to be 1.8 (=ksmod); and 3) serum starvation modeled as the decrease relative to baseline of the state 2 to 3 transition rate constant (this transition was estimated to be ~20-fold slower under the conditions of serum starvation, see the kdmod estimate in the plot). The time course flow data were fitted simultaneously to the 4 model parameters ((, k, kdmod, ksmod) and the initial state probability distribution. The reciprocals of the rate constants summed around the model yielded average cell cycle times of 13h during the first 8 hours of the experimient and 32h after that.  An R script called fitFlow.r that accomplishes this data analysis is included in the “demos” subdirectory of the TFCT package. This file will be discussed in class.
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library(odesolve)


fderiv12 <- function(t, X, A)


{xp=A%*%X


list(xp)}





nG1=3;nS=6;nG2=2;nM=1 # these are the number of states in each phase


NS=nG1+nS+nG2+nM


y0=c(1,rep(0,NS-1))


lamG1=1;lamS=1;lamG2=1; lamM=1


dA=c(rep(lamG1,nG1),rep(lamS,nS),rep(lamG2,nG2),rep(lamM,nM))


A=diag(-dA)


for (i in 2:NS) A[i,i-1]=dA[i-1]


A[1,NS]=2*dA[NS]


outs=lsoda(y=y0,times=c(seq(0,15,3),20,24,36),fderiv12, parms=A, rtol=1e-4, atol= 1e-4)


outs=data.frame(outs)





par(mfrow=c(3,6))


for (i in 1:dim(outs)[1]) {


y=outs[i,2:(NS+1)]


states=1:NS


Ecells=sum(y)


plot(states,y,xlab="Cell State",ylab="Cell Count",


main=paste("N =",round(Ecells,1),",  t =",outs[i,1]," hrs")  )


lines(states,(Ecells*lamG1/NS)/(1-exp(-lamG1*NS))*exp(-log(2)*lamG1*states/NS)/log(2))


G1=sum(y[1:nG1])


S=sum(y[(nG1+1):(nG1+nS)])


G2M=sum(y[(nG1+nS+1):NS])


X=seq(0,3,by=.01)


Ys=rep(0,length(X))


for (i in 1:nS) Ys=Ys+as.numeric(y[nG1+i])*dnorm(X,mean=1+i/(nS+1),sd=.1)


Y=G1*dnorm(X,mean=1,sd=.1)+G2M*dnorm(X,mean=2,sd=.1)+(1/nS)*Ys


plot(X,Y,xlab="DNA Content",ylab="Cell Count")


}


par(mfrow=c(1,1))
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