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Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for
development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these
core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets
from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening
experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface
markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package
(TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in
good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.
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1. Introduction

While there are a number of different software packages
available for analysis of FCM data, these programs are often
ill-suited to the development of new methods needed for
analyzing high-throughput FCM studies. Flow Cytometry-
High-Content Screening (FC-HCS) experiments generate
large volumes of data [1, 2], which requires a system-
atic approach to preprocessing, gating (i.e., filtering), and
summarizing results for robust analyses. Current FC-HCS
data analysis methods often use a combination of software
packages for different parts of the analysis. The raw FCM files
are processed and gated using FCM specific software, such as
FlowJo or FCS Express (De Novo Software, USA). Results are
then exported, and statistical analysis is performed in pack-
ages like MATLAB (USA) and R (http://www.r-project.org/)
[3]. Unfortunately, this approach to FC-HCS analysis results
in methods that are semiautomated at best, and they
often require significant subjective and error-prone manual
intervention to identify cells of interest [4]. It is therefore
desirable to develop programmatic approaches to process

FCM data so that FC-HCS analysis pipelines are robust,
objective, and able to match the high-throughput capacity
of modern cytometers.

FCM packages available through the Bioconductor [3]
project provide an open platform that can be used by
cytometrists, bioinformaticians, and statisticians to collab-
oratively develop new methods for automated FC-HCS
analysis. The basic data processing tools for importing, trans-
forming, gating, and organizing raw FCM data are in the
flowCore package [5] and the visualization functions are in
flowViz [6]. The Bioconductor model for FCM data analysis
facilitates the development of new analysis methods, since
the overhead associated with accessing and visualizing FCM
data is handled by flowCore and flowViz. The availability of
flowCore and flowViz has enabled the creation of new tools
for quality assessment of large FCM experiments, such as
flowQ [7], and for model-based clustering and automated
gating, such as flowClust [8].

We have developed an R package (plateCore) that
also takes advantage of the functionality in flowCore and
flowViz to create methods and data structures for processing
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> pbmcFP <- flowPlate (pbmcPlate,
         wellAnnotation, plateName = “PBMC.001” )

> pbmcFP <- Subset (pbmcFP, rectangleGate (
        “FSC-H” = c(300, 700), “SSC-H” = c (50,400)))

> pbmcFP <- setControlGates (pbmcFP,
          gateType = “Negative.Control” )

 

> pbmcFP <- compensate (pbmcFP, compensation.matrix)

> pbmcFP <- applyControlGates (pbmcFP)

> pbmcFP <- summaryStats (pbmcFP)

> ecdfplot (~‘FSC-H’|as.factor (Row.Id), plateSet (pbmcFP))

plateCore
workflow

Figure 1: Typical FC-HCS plate workflow on the left and corresponding steps from a PBMC lymphocyte plateCore analysis on the right.

large, plate-based FCM data sets. Additionally, we have
implemented new tools to make it easier to integrate
textual descriptions of plate layouts and also to perform
automated gating based on nonparametric analysis of neg-
ative control wells. This study presents results from an
automated plateCore analysis of a PBMC lymphocyte BD
FACS CAP (Combinational Antibody Profile) data set, which
included 189 different antibody-dye conjugates and their
controls arranged on 5 replicate 96-well plates. The output
of plateCore was compared to an analysis by an expert
cytometrist using FlowJo, one of the standard FCM analysis
programs, to evaluate the performance of the automated
approach.

plateCore is not designed to be a graphical user interface
driven tool, but rather to help develop a standardized plat-
form for the analysis of FC-HCS data. These analyses often
represent a collaborative effort between cytometry experts
who generate the data and the quantitative individuals who
help deal with the large volume information. In order for this
collaboration to work, the cytometrists must have confidence
in the results of the automated analysis. To this point, we
demonstrate the equivalence of our results to those produced
by an expert cytometrist using FlowJo.

2. Materials and Methods

2.1. Flow Cytometry Data. The data analyzed in this study
was part of the initial set of experiments used to validate the
BD FACS CAP platform. BD FACS CAP was designed as a
cell characterization tool to screen for the presence of a large
number of different human cell surface markers, and it was

important to show that the assay was able to correctly identify
positive and negatively staining markers on a well-studied
cell population, such as PBMC lymphocytes. Previously
frozen PBMC samples from two donors were analyzed on a
BD FACS Calibur using BD FACS CAP staining plates. The
analysis was performed on 96-well plates with 189 different
antibodies arrayed three per well in 63 test wells, along with
30 isotype control wells and three unstained controls. The
complete list of BD FACS CAP antibodies can be found
at http://www.bd.com/technologies/discovery platform/
BD FACS CAP.asp. FCM files for the five plates (two for
Donor 1 and three for Donor 2) are available for download
from http://www.ficcs.org/data/plateData.tar.gz.

2.2. Data Analysis. FCM output was analyzed in parallel
using FlowJo and plateCore. Short descriptions of the steps
in each software package are provided below. Additionally,
the plateCore script used to perform the analysis is pro-
vided in Supplementary Materials available online at doi:
10.1155/2009/356141, and an example of the progression
from raw FCM data files to a completed plateCore analysis
for a single plate is shown in Figure 1.

2.3. plateCore

(1) Template Construction. A tab delimited text file was
created that describes the contents of each well on the
replicate plates. This information includes the marker
name, fluorophore, antibody type, and the isotype group
assignment. In this early version of BD FACS CAP the
combination of antibodies in a well was based on available
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Figure 2: FlowJo estimates for the percentage of cells above the isotype threshold for 189 markers on replicate plates for donor 1 and donor
2. Estimates from markers where the center of the cell population was near the isotype threshold, around 50%, were more variable than
samples which were clearly positive (≥99%) or negative (≤1%). The correlation for replicate plates was strong in both donors, with donor 1
at 0.92 and donor 2 at 0.98. Plate 9208 for donor 2 is not shown, since the results are very similar to 9206 and 9207.

antibody-dye combinations. Newer versions of BD FACS
CAP use biological information to assign markers to wells
and are able extract more useful coexpression information.

(2) Data Import. FCM files for each plate were imported
using flowCore. The import operation produces 5 flowSet
objects, one for each plate, which were then integrated
with the layout information in the template to create 5
flowPlates.

(3) Gating. flowPlates were processed using a combination
of static gates (rectangleGate) and data driven gates (using
norm2filter in flowCore) to pick out the lymphocytes in the
forward (FSC) and side scatter (SSC) channels.

(4) Plate Level Quality Assessment. The quality of the data
was then assessed by looking for fluidic events such as
bubbles, pressure drops, or large aggregates that can shift the
baseline fluorescence readings. Fluidic events can often be
identified by plotting the empirical cumulative distribution
function (ecdf) plots of FSC values for each well and looking
for distributions shifted relative to other wells [9]. Based
on the ecdf plots, several wells were further investigated by
cytometry experts who determined that the shifts were in an
acceptable range.

(5) Isotype-Based Gating. The threshold between positive
and negative cells was determined using the isotype controls,
which provided a gross estimate of nonspecific binding in
the primary antibodies. One-dimensional gates were created

using the isotype thresholds, and these gates were applied
to identify cells that had specific staining in channels of
interest. Details about the nonparametric isotype gating
strategy implemented in plateCore are provided in the results
section.

(6) Summarization. The 5 flowPlates were then aggregated
into a single flowPlate using the fpbind operation from
plateCore. Having the data in this format makes it easier to
plot replicate wells from different plates, perform statistical
analyses, and to export a single, experiment level results text
file.

2.4. FlowJo

(1) Template Construction. An XML-based FlowJo template
was created where test wells and their corresponding isotype
control well were assigned to one of 30 groups. Wells in each
group contained similar sets of antibody-dye conjugates.

(2) Data Import. FCM files were imported using the FlowJo
template.

(3) Gating. Lymphocytes were selected using polygonal gates
in the FSC-SSC view.

(4) Plate Level Quality Assessment. Quality assessment was
performed by looking for wells where the FSC-SSC location
of the lymphocyte population shifted relative to other wells
on a plate.
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Figure 3: Plot showing the percentage of cells above the isotype threshold from plateCore (x-axis) and FlowJo (y-axis) for each of the
189 markers on the 5 PBMC plates. If the two methods produce similar estimates, then the values should be near the red line (y = x). In
plateCore the isotype threshold was determined using only information from the isotype control well, while the threshold in FlowJo may be
adjusted after identifying either positively or negatively staining test samples. Generally, these FlowJo adjustments resulted in the isotype gate
being set a higher level to exclude a negative test sample. The effect of increasing the isotype threshold can be seen in these plots, where most
disagreements are cases where plateCore estimates are higher than FlowJo. Detailed plots for one marker, CD112 (red diamond), where the
two methods give different results are shown in Figure 5.

(5) Isotype-Based Gating. Event data for isotype wells was
visualized on a log scale, and the expression threshold for
each stained channel was set by picking a value that lies above
the bulk of the events. Isotype gates were initially set so that
approximately 0.5% of the events in the isotype well were
above the threshold. These gates were then applied to the
test wells, and the gates were moved up or down depending
upon positive and negative test well populations. If the
population of cells in positive wells was much higher than the
isotype gate, then the gate was moved up to help reduce false
positives associated with nonspecific staining. Similarly, if the
isotype gate was higher than negative samples, the gate would
be moved down to ensure that positive cells were classified
correctly.

(6) Summarization. The percentage of cells above the thresh-
old for each of the 189 antibodies was then exported for each

plate, and these results were merged to create the analysis
report.

3. Results

Although this study focuses on comparing two different
FC-HCS analysis methods, it is important to consider the
original goal of the experiment used to generate the data
when interpreting the results. BD FACS CAP was designed
to provide a standard assay platform for screening a large
number of markers on many different cell types. The
validation effort for BD FACS CAP included running the
assay on well-characterized cell types to find markers with
either positive or negative staining and comparing these
results to published cell expression profiles in literature.
The PBMC lymphocyte staining results presented in the
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Figure 4: Plot showing the percentage of cells above the isotype threshold from plateCore (x-axis) and FlowJo (y-axis) for donor 1 (red)
and 2 (blue) in channels FL1-H through FL4-H. plateCore gating for Phycoerythrin (PE) conjugated antibodies (FL2-H) was consistently
lower than FlowJo, resulting in more cells above the isotype gate.

following section represent one of the cell types used for
validating the technology.

3.1. FlowJo Output. Descriptions of marker expression pro-
files for particular cell populations in flow cytometry often
use terms like positive-negative, or bright-dim, to qualify
the amount of target present. Since BD FACS CAP is
a standard platform for screening a wide range of cell
types, and antibody concentrations were not optimized
for these particular PMBC samples, results are reported
as the percentage of cells above the isotype gate rather
than positive or negative. Followup studies, including single
color titrations and competition experiments, are needed

to definitively show that a marker is present. Markers that
have been previously characterized using BD FACS CAP
with ≥90% of the cells above the isotype threshold are
usually confirmed as positive using titration and competition
experiments, while staining in markers with ≤10% of cells
above the isotype threshold is often the result of nonspecific
binding (data not shown). Note that these percentages refer
to the fraction of cells above the isotype threshold, but
this does not necessarily imply heterogeneous staining in
multiple populations.

Automating the creation and modification of isotype
gates made by cytometrists analyzing BD FACS CAP data
using FlowJo is challenging. Cytometrists adjust gates based



6 Advances in Bioinformatics

0

0.5

1

1.5

2

D
en

si
ty

100 100.5 101 101.5

FL2-H

102

Plate 8774

plateCore

Isotype

CD109

CD112

FlowJo

(a)

0

0.5

1

1.5

2

D
en

si
ty

100 100.5 101 101.5

FL2-H

102

Plate 8775

(b)

0

0.5

1

1.5

2

D
en

si
ty

100 100.5 101 101.5

FL2-H

102

Plate 9206

(c)

0

0.5

1

1.5

2

D
en

si
ty

100 100.5 101 101.5

FL2-H

102

Plate 9207

(d)

0

0.5

1

1.5

2

D
en

si
ty

100 100.5 101 101.5

FL2-H

102

Plate 9208

(e)

Figure 5: Density plots showing the plateCore (solid black) and FlowJo (dashed black) isotype gates for CD112 and CD109, which shared
the same isotype control (IgG1-PE). The plateCore and FlowJo analyses gave different estimates for CD112 (see Figure 3), which was caused
by the gate being moved higher in FlowJo based on the presumed negative staining for CD109.

on expert knowledge about the performance of specific
antibody types and dyes, or after identifying positive or
negative test samples. If the isotype gate cut off the bottom
portion of a positive cell population in a test well, then the
gate was moved down. Similarly, if the isotype gate included
too many cells from negative test wells, it was moved up.
Results from the FlowJo-based gating of replicate PBMC
plates are shown in Figure 2. Detailed results for each marker
are not presented in this study, but since the majority of
antibodies on the BD FACS CAP staining plate are known
to bind different leukocytes, it is not surprising that a large
fraction would be identified as positive on PBMCs. Markers

such as CD44, CD45, CD47, and CD59 are broadly expressed
on lymphocytes and were positive (>99%) in this study.

3.2. plateCore versus FlowJo. Isotype controls are used to
determine the threshold between background staining and
specific binding of an antibody conjugate to its target. For
the FlowJo analysis, the gate was initially set at the 99.5th
quantile of the fluorescence signal in each stained channel
of the isotype and then adjusted based on results from test
wells. In plateCore, we have implemented two approaches to
automatically creating gates based on negative controls. The
first simply replicates the initial creation of the FlowJo gates
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and determines the threshold based on a set quantile, while
the second uses a nonparametric approach where the gate
(Gij) for isotype i, channel j was set according to

Gij = MFIi j + 4MADi j , (1)

where MFI is the Median Fluorescence Intensity and MAD
is Median Absolute Deviation in the raw data (linear
scale). Although FCM fluorescence signals are approximately
lognormal, as evident from density plots shown in this
study (Figures 5 and 8), it is difficult to reliably make
distributional assumptions, and the choice of 4 MADS
represents a conservative attempt to set the gate above the
99th quantile of cells in the isotype stained wells.

The nonparametric gating approach is obviously more
robust to outliers than a static gate based on the 99.5th quan-
tile, but in practice both methods produce very similar results
if the data is good quality and there are a sufficient number
of cells (over 1000) in the isotype well. The plateCore analysis
presented in this study used the nonparametric approach
to gating, and while this relatively simple method works
surprisingly well for BD FACS CAP, advances in model-based
clustering methods, such as those in flowClust, should lead to
future performance improvements in automated gating.

Comparisons of the output from the plateCore and
FlowJo analyses are shown in Figure 3. Both methods
produce nearly identical estimates for markers that were
either clearly positive (≥99%) or clearly negative (≤1%),
and R-squared values for all makers were between 0.83
and 0.93 (Figure 3). These cell populations are not close to
the isotype threshold, and therefore different isotype gate
settings have little or no effect on estimates of the percentage
of cells above the gate. In situations where the isotype gate
splits a test cell population, small changes to the gate can
dramatically change these estimates. This effect is evident in
the results from replicate plates using FlowJo (Figure 2) and
in comparisons of FlowJo and plateCore (Figure 3), where
estimates for markers having approximately 50% of the cells
above the isotype gate are more variable than markers having
≤1% or ≥99%.

Figure 4 shows the plateCore and FlowJo comparison
broken down by channel, and we can see that a large portion
of the markers that disagree were stained with Phycoerythrin
(PE) in FL2-H. plateCore estimates for antibodies conjugated
to PE were almost always higher than FlowJo, indicating that
the isotype gates in FlowJo were moved above their initial
setting. Looking in detail at one PE conjugate where the
two methods disagree, CD112 IgG1-PE, we can see how the
gate for was changed in the manual analysis based on what
looks like nonspecific staining in a related test sample, CD109
IgG1-PE (Figure 5). Since the gene for CD112 (PVRL2) has
been shown to be expressed on a subset of lymphocytes in
healthy donors using microarrays [10], the plateCore results
showing 65%–92% of the cells above the isotype gate may
actually represent specific staining. Unfortunately, increasing
the isotype (IGg1-PE) threshold in FlowJo to eliminate
what looks like background staining in CD109 also seems
reasonable. More focused studies will have to be performed
to determine if the staining for CD112, and other markers
that disagreed, was positive or negative.
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Figure 6: Density plot showing an example of one case where the
isotype (IgG1-Alexa 488) gate settings differed between replicate
plates for donor 2 (blue). In this case, the low setting for plate
9207 did not result in a significant difference between plates for
the percentage of cells above the gate in the corresponding test well
(CXCR5), so the gate was not modified. Plates 9206, 9207, and 9208
had 14%, 16%, and 15% percent of cells above the gate, respectively.

3.3. Gating Quality Assessment. Since we may not always
have access to output from expert cytometrists to help
determine if our automated gating is reasonable, we need
alternative approaches to assessing the quality of our isotype-
based gates. The strategy we used for this PBMC study
involves visually checking density plots of the isotype wells
for replicate plates and also comparing the percentage of
cells above the isotype gates versus the MFI ratio to see if
the gating was consistent across the experiment. Plates for
each PBMC donor are purely technical replicates; so any
differences should be due to variation in cell staining or
changes in instrument settings.

An example of the plots used to check replicate isotype
gates is shown in Figure 6. In this case the threshold for
one of the 3 replicate plates for donor 2 was lower than the
other 2, indicating that the marker expression values from
this isotype should be further evaluated. Fortunately, the
difference is relatively small and did not change the estimate
for the test well associated to this isotype (CXCR5 IgG1-
Alexa 488). If the difference between replicates had been
larger, we would have averaged the isotype thresholds from
the remaining replicates and replaced the setting for plate
9207.

The MFI ratio is defined as the ratio of the MFI for a
marker to the MFI of its isotype control. Essentially, this
ratio tells us how well separated a population of stained test
cells is from the population of cells in the isotype control.
The distance between these two populations is related to
the percentage of cells above the isotype gate (Figure 7).
To evaluate isotype gating at the experiment level for these
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performing a robust logistic regression of the percentage of cells
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for estimates that were more than 2 standardized residuals away
from the best fit line (red line). There were 18 estimates flagged in
this study (red diamonds) where the value was different than we
would predict from the MFI ratio. Detailed examination of these
18 cases showed that the isotype gate settings were reasonable, but
they differed from other markers in that they had more than one
population of stained cells. Sample density plots for one of these
markers, CD3, are provided in Figure 8.

5 plates we performed a robust logistic regression for the
percentage of positive cells on the MFI ratio and looked for
values that were more than 2 standard residuals from the
best fit line. We chose 2 standard residuals in a conservative
attempt to ensure that any questionable automated gating
decisions were examined in detail. Deviation from the best
fit line can indicate either a problem with the isotype gate or
that the sample has multiple cell populations (Figure 8). If
the percentage of cells above the gate is significantly different
than we would predict from the MFI ratio, then the isotype
gate was checked. We note that this approach does not
actually tell us if the gating was correct, simply whether or
not the isotype gating was consistent.

The bulk of the measured responses for the markers (927
out of 945) is within two standard residuals from the best
fit line (Figure 7), which is surprising since the 189 different
antibodies were conjugated to different fluorophores (either
Alexa 488, FITC, PE, PerCP, APC, or Alexa 647) and matched
against different isotypes (either IgG1, IgG2, IgG2a, IgG2b,
IgG3, or IgM). We expected that differences in fluorescence
intensity between dyes, and variation in nonspecific binding
by different antibody types, would make direct comparisons
difficult. The 18 values that were more than two standard
deviations away from the line were examined in detail, and
the isotype gate settings were found to be reasonable. In this
case the flagging was the result of a positive and negative
staining population of cells, which made the relationship
between the MFI ratio and the fraction of cells above the

isotype gate look very different than markers staining a single
population. Density plots for one of the flagged markers,
CD3, are shown in Figure 8.

4. Discussion

We were motivated to use the flowCore package for BD
FACS CAP data analysis by a desire to reduce subjectivity
associated with isotype gating and also to make the more
analyses more reproducible. We found that while flowCore
was very powerful, both in terms of efficient use of memory
for large data sets and an extensive collection of FCM
functions, it did not scale well to BD FACS CAP experiments
with multiple plates and a complex layout. plateCore was
developed to make it easier to perform operations and
produce visualizations that are technically challenging to
do in flowCore and flowViz. For example, creating a set
of threshold gates based on negative control wells, either
isotype or unstimulated cells, and then applying those gates
to test wells on a plate is a relatively common FC-HCS
operation. In this study, the PBMC isotype gates were created
and applied to test wells in two steps, using setControlGates
and applyControlGates (Figure 1). Replicating this same
operation in flowCore would require either many individual
custom gating steps or users to develop their own methods
that duplicate the functionality in plateCore.

plateCore provided the ability to quickly analyze complex
BD FACS CAP plates and produce useful visualizations
(such as Figures 2–8), which facilitated discussions with
the cytometry experts and helped to develop approaches
to automate the gating process. Since this was a screening
assay, the goal was to quickly and reproducibly process
a large volume of data to get an approximate expression
value for each of the 189 human cell surface markers and
then perform more in-depth analysis for markers that were
of biological interest. Using plateCore, we were able to
reduce the level subjectivity in setting isotype gates, eliminate
mistakes associated with manual data annotation and export,
and automate the creation of plots and data quality reports
that summarized the experiment. Additionally, the plateCore
scripts and experimental annotation can be shared with
other cytometry groups, allowing them to reproduce our
analysis.

An important realization from our experience develop-
ing plateCore and analyzing BD FACS CAP experiments
was that individual isotype gates should not be changed by
cytometrists when performing FC-HCS experiments. The
cytometrist does not have any information other than expert
opinion about where a gate should go for a particular
set of values, and making adjustments adds both bias and
noise to the end result. In addition, the use of a more
uniform gating approach facilitates the use of plateCore to
combine and analyze results across many samples, which
is one of the important new capabilities of this software.
The functionality in plateCore enables cytometrists and
statisticians to work together and make higher level decisions
about gating strategies, based on methods like the gating
quality assessment shown in Figure 7. Also, the gating in
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Figure 8: Density plot for CD3 (IgG1-Alexa 488), which was flagged for further evaluation by our gating quality assessment (Figure 7). The
isotype gate settings look reasonable; however the MFI ratio for CD3 was very different from other markers that also had 75%–80% of their
cells above the isotype gate. Looking at Figure 7, other markers with 75%–80% had MFI ratios near 5, while CD3 has an MFI ratio of 31–37.
The flagging was the result of 2 cell populations for CD3, whereas most other markers stain a single population.

this experiment is relatively simple since we were only
concerned with one dimension at a time. Developing new
methods to reproducibly gate samples in three or more
dimensions requires tools like flowCore and flowClust. plate-
Core provides infrastructure that makes the data available
to quantitative scientists to further develop and apply these
research tools.

The complexity of large FCM experiments, like BD FACS
CAP, highlights the difficulty of applying existing FCM anal-
ysis platforms to high-throughput studies. Generating and
interpreting results from this PBMC study required extensive

collaboration between flow cytometrists, bioinformaticians,
and statisticians. At various points in the analysis, each group
needed to access the raw data, annotation, and details about
the experimental design. Providing this access using stand-
alone FCM platforms is expensive in terms of the price of
multiple software licenses and in time spent training statisti-
cians and bioinformaticians to use the programs. Fortunately
the Bioconductor FCM packages are modeled on standard
data structures used for microarrays, which should already
be familiar to most quantitative individuals working on high-
throughput biological problems. In addition, this approach
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allows scientists to use modern software development tools,
including version control software, to manage plateCore
scripts and make the analysis reproducible in a way that
is generally not possible with GUI-based tools. Finally, we
found that flowCore, flowViz, and plateCore provide an open
analysis platform that facilitates communication between the
flow cytometrists generating the data and the computational
experts analyzing the data.
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