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Abstract

We present the framework of generalised supply–demand analysis (SDA) of a kinetic model of a cellular system, which can be applied

to networks of arbitrary complexity. By fixing the concentrations of each of the variable species in turn and varying them in a parameter

scan, rate characteristics of supply–demand are constructed around each of these species. By inspecting the shapes of the rate

characteristic patterns and comparing the flux–response coefficients of the supply and demand blocks with the elasticities of the enzymes

that interact directly with the fixed metabolite, regulatory metabolites in the system can be identified and characterised. The analysis

provides information on whether and where the system is functionally differentiated and which of its species are homeostatically

buffered. The novelty in our proposed method lies in the fact that all metabolites are considered for SDA (hence the term ‘‘generalised’’),

which removes investigator bias. It supplies an entry point for the further analysis and detailed characterisation of large models of

cellular systems, in which the choice of metabolite around which to perform a SDA is not always obvious.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

While the 20th century can be regarded as the era of
structural characterisation in biochemistry and molecular
biology, the 21st century is rapidly emerging as an era of
integration and synthesis. The burgeoning field of systems
biology has developed out of the realisation that biological
systems cannot be understood from reductionist character-
isation of their components alone, but that their interac-
tions have to be put together in a ‘‘systems’’ framework.
This has led to experimentation on a system-wide scale in
the various omics fields, and to coordinated efforts through
large international alliances (Kitano, 2005) for construct-
ing large-scale computer models of living systems. The
number of kinetic models of cellular pathways grows
e front matter r 2007 Elsevier Ltd. All rights reserved.
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weekly, as any survey of the JWS Online (Olivier and
Snoep, 2004) and BioModels (le Novère et al., 2006)
databases will show. Increasing model sizes have resulted in
the development of standards such as SBML for model
representation and visualisation (Hucka and Finney, 2005).
Such models provide powerful tools that are often more
accessible to query and interrogation than experimental
systems. Yet, without proper frameworks of analysis, these
models, albeit big and comprehensive, remain little more
than collections of data.
The framework of supply–demand analysis (SDA),

developed by Hofmeyr and Cornish-Bowden (2000), has
proved useful in studying the regulation of cellular path-
ways within the metaphor of an economy controlled by
supply and demand. It has become a reference framework
for analysing metabolic pathways by teaching scientists to
look for flux control beyond the scope of what has
traditionally been called the pathway, i.e. in the demand
for its end-product, a view that has subsequently been
corroborated by experimental data (e.g. Koebmann et al.,
2002).
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While SDA can provide useful results, its application to
large kinetic models of cellular pathways is hampered by
the problem that their complexity may preclude us from
finding a ‘‘natural’’ subdivision of the system into supply
and demand blocks. With this in mind, the present paper
aims to generalise SDA so that it can be applied to models
of arbitrary size and complexity in a systematic, computer-
driven way. We will show that this enables us to identify
and characterise regulatory metabolites in the system and
affords an entry point for further detailed investigation of
the model.

It is appropriate that this work appears in a memorial
issue dedicated to the memory of Reinhart Heinrich. He
was together with Kacser and Burns (1973), one of the
fathers of the field of control analysis (Heinrich and
Rapoport, 1974; Heinrich et al., 1977). For textbook
review of this field, see Fell (1996) and Heinrich and
Schuster (1996). Control analysis lies at the foundation of
SDA. Heinrich was one of the pioneers to realise the power
of analysing cellular systems through computer modelling,
arguably the most well-known example of this is his work
on erythrocytes (e.g. Heinrich, 1985). Until his death, he
was never shy to develop new concepts to aid in
understanding cellular function; most recently, these
included expanding metabolic networks (Ebenhöh et al.,
2004) and scopes of compounds (Handorf et al., 2005). We
hope that by developing the concept of generalised
supply–demand analysis (GSDA) here, we will be able to
stand on the shoulders of this scientific giant.

2. The concept: Generalised supply–demand analysis

We begin by considering a system of coupled enzyme-
catalysed reactions constituting a cellular network. Such a
system can be described (and simulated) with a kinetic
model, ds=dt ¼ Nv, where s and v are vectors of variable
species concentrations and rates, respectively, and N is the
stoichiometric matrix of the system. In order for a steady
state to obtain in this system, the inputs and outputs have
to be maintained at constant levels (i.e. ‘‘clamped’’); in
practice this means that the pathway substrate has to be
continually replenished and its product continually re-
moved. In kinetic models of such a system, these external/
terminal species are therefore also kept fixed.

SDA (Hofmeyr and Cornish-Bowden, 2000) considers
the subdivision of a pathway around a central intermedi-
ate, with the block or blocks of reactions contributing to
the production of the intermediate constituting the
‘‘supply’’, and those that contribute to its consumption,
the ‘‘demand’’. The behaviour of the system around the
steady-state point is assessed with a so-called combined
rate characteristic (Hofmeyr, 1995), which depicts how
the rates of supply and demand vary with changes in the
concentration of the intermediate. The intersection of the
supply and demand rate characteristics signifies the steady-
state point. If the rate characteristic is drawn in double-
logarithmic space, the elasticities of supply and demand
towards the intermediate can be read off directly as slopes
of the tangents to the supply and demand curves at the
steady-state point, enabling the calculation of control
coefficients.
One of the main tenets of SDA is that when one of the

two blocks controls the flux, the other one determines the
degree of homeostasis in the intermediate; such a system
has been termed functionally differentiated. Thus, in a
classical biosynthetic pathway of an amino acid, for
example, if the demand for the amino acid controls the
flux, the kinetic properties of the supply will set the steady-
state concentration of the amino acid, and the supply
elasticity will determine the degree of homeostasis in its
concentration (the larger the absolute value of the supply
elasticity, the smaller the absolute value of the concen-
tration–control coefficients of both supply and demand—
they are numerically equal and opposite in sign—and the
better the homeostasis in the amino acid concentration).

In silico SDA with a kinetic model is extremely easy. The
intermediate around which the rate characteristic is to be
constructed, is made into a fixed (clamped) species of the
model, thus turning it into a model parameter (and
effectively decoupling supply and demand). This parameter
is then varied over a wide range through a parameter scan
of the model; the fluxes of supply and demand are
calculated at each value. An implicit assumption of this
approach is that the system has been or can readily be
partitioned into supply and demand, and that there is no
communication between supply and demand other than
through the intermediate. However, when faced with the
complexity of cellular pathways or of large models of such
pathways, the choice of intermediate around which to
perform the SDA is often far from obvious. The aim of this
paper is therefore to generalise SDA in such a way that it
can easily be performed on kinetic models of any cellular
system, large or small, without requiring prior knowledge
of its regulatory structure.
GSDA works in the following way: each of the variable

intermediates is clamped in turn and thus made into a
parameter of the system. Its concentration is then varied
above and below the reference steady-state value in the
original system through a parameter scan, and the fluxes
through the supply and demand reactions that are directly
connected to the intermediate are plotted on a log–log rate
characteristic. Every flux that directly produces the
intermediate is a separate supply flux, and likewise, each
flux that directly consumes it is a separate demand flux.
There will thus be as many rate characteristics as there are
reactions that produce or consume the intermediate. It
should be emphasised that this procedure is valid for
arbitrary models and certainly not limited to linear
pathways. Neither does it presuppose a subdivision of the
system into supply and demand blocks; rather, the analysis
is performed for every intermediate. Moreover, the
restriction in ordinary SDA that prohibits communication
between the blocks other than through the linking
intermediate is removed (e.g. it is permissible for a
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Fig. 2. A six-enzyme branched pathway converting substrate S to

products P and Q.
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metabolite in a supply block to affect a reaction in a
demand block directly through allosteric interaction).

GSDA yields as many combined rate characteristic
graphs as there are variable species in the system. As will
be shown below, the following important features about
the regulation of the system can be identified from the
shapes of the curves and associated elasticities and
response coefficients:
(1)
S

Fig.

In m

(see
potential sites of regulation;

(2)
 regulatory metabolites;

(3)
 the quantitative relative contribution of different routes

of interaction from an intermediate to a supply or
demand block;
(4)
 sites of functional differentiation where one of the
supply or demand blocks predominantly controls the
flux, and the other determines the degree of homeo-
static buffering of the intermediate.
At this point, the above considerations may seem abstract
and theoretical. We therefore exemplify GSDA in the next
section with a model of a linear 5-enzyme pathway
containing a feedback loop and with a branched model.
3. Example: Generalised supply–demand analysis of two

small metabolic pathways

3.1. Computational methods

All simulations presented in this paper use variants of a
kinetic model of a simple linear 5-step pathway (Fig. 1) or a
branched 6-step pathway (Fig. 2). Steady-state calculations
were performed with the PySCeS software developed in
our group (Olivier et al., 2005), using an IBM-compatible
PC. PySCeS is written in the Python programming
language (http://www.python.org) and makes use
of the SciPy library of numerical routines (http://
scipy.org). Graphs were prepared with the Matplotlib
(http://matplotlib.sourceforge.net) plotting
library for Python. An add-on Python package, ratechar,
was developed for PySCeS, which automatically performs
the GSDA for a given PySCeS model by clamping each
variable species in turn, varying its concentration in a
parameter scan and plotting the resulting graphs. The code
is available from the authors under the open-source GNU
general public licence.

Detailed model descriptions for all the models, as well as
model definition files in PySCeS input file (Olivier et al.,
2 3 4A B C D1 5 P

1. A five-enzyme linear pathway converting substrate S to product P.

odel III, the first enzyme is allosterically inhibited by intermediate C

main text).
2005) and SBML (Hucka et al., 2004) formats, are
available in Supplementary data accompanying this paper.

3.2. The procedure of generalised supply–demand analysis

To illustrate the procedure of GSDA, three variants of
the model in Fig. 1 were considered (models I–III), each
with different kinetics to give different dynamic behaviour
that could be classified as ‘‘regulated’’ vs. ‘‘non-regulated’’
or ‘‘functionally differentiated’’ vs. ‘‘undifferentiated’’.
Furthermore, to illustrate that the analysis is not

restricted to linear pathways, the procedure was applied
to the branched model in Fig. 2 (model IV).
The models all have four variable metabolites (A–D)

around which the GSDA is performed. The main features
of the models are the following:

Model I: This is the base-line, undifferentiated version of
the linear model (Fig. 1). All five enzymes have identical
kinetic parameters and are modelled with reversible
Michaelis–Menten kinetics (with the exception of enzyme
5, which is modelled with irreversible Michaelis–Menten
kinetics). There is no allosteric feedback from C to enzyme 1.

Model II: This is the same as model I, except that
reaction 4 has been made insensitive to changes in the
concentration of C by lowering the limiting rate of enzyme
4 (V f4) and its KM for C.

Model III: In this model, enzyme 1 is inhibited
allosterically by C and is modelled with reversible Hill
kinetics (Hofmeyr and Cornish-Bowden, 1997). The limit-
ing rates of enzymes 2 and 3 have been increased so that
they are close to equilibrium. Enzymes 4 and 5 together
have almost complete control over the flux through the
pathway.

Model IV: This is branched model of Fig. 2.
As explained in Section 2, a GSDA is performed by

clamping each variable species of the model in turn and
varying its concentration to generate the supply and
demand rate characteristics. This yields graphs such as in
Fig. 3, which shows the GSDA around metabolite B in
model I. To facilitate the interpretation of such graphs, this
specific case will be discussed in detail before presenting the
GSDA for all metabolites of all four models. Fig. 3 shows
the log–log rate characteristics of supply and demand, with
their intersection marking the steady-state point. The
supply rate characteristic is drawn in light grey and the
demand rate characteristic in medium grey. Rate char-
acteristics are extremely useful for visualising supply–
demand control analysis. For example, the slopes of the
tangents to the rate characteristics (indicated by dashed

http://www.python.org
http://scipy.org
http://scipy.org
http://matplotlib.sourceforge.net
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concentration of B was clamped and varied to generate the supply and

demand rate characteristics, as described in the text. The steady-state
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lines on the graph) equal the flux–response coefficients of
supply and demand towards B (in Fig. 3, J12 signifies the
flux through the supply block and J345 that through the
demand block). These response coefficients quantify how
sensitively the supply and demand fluxes respond towards
changes in b. Note that they are equivalent to ‘‘block-
elasticities’’ (Fell and Sauro, 1985) or co-response coeffi-
cients (Hofmeyr et al., 1993; Hofmeyr and Cornish-
Bowden, 1996) in the complete system where B is not
clamped, e.g.

R
J345
b ðB clampedÞ ¼ ev345

b ðwhole systemÞ

¼ O
J345:b
12 ðwhole systemÞ. ð1Þ

SDA as originally described (Hofmeyr and Cornish-
Bowden, 2000) assumes that the only communication
between supply and demand is via the linking intermediate.
In this situation, the supply–demand block control
coefficients of the complete pathway can be directly
calculated from the supply and demand block elasticities:

CJ
v12
¼

ev345
b

ev345
b � ev12

b

; CJ
v345
¼
�ev12

b

ev345
b � ev12

b

,

Cb
v12
¼

1

ev345
b � ev12

b

; Cb
v345
¼

�1

ev345
b � ev12

b

. (2)

Eq. (2) shows that the distribution of flux control is
determined by the ratio of the block elasticities
(CJ

v12
=CJ

v345
¼ �ev345

b =ev12
b ), while the magnitude of concen-

tration control is determined by the sum ev345
b � ev12

b . GSDA
relaxes the condition that the only communication between
supply and demand is through the linking metabolite. As a
consequence, the control analysis of Eq. (2) will be invalid
for A and B in model III (Fig. 4c), as the feedback loop
introduces an additional link from their demand to their
supply blocks.
Fig. 3 also shows graphically the elasticities of the

enzymes that produce or consume B. Elasticities are local
properties of enzymes and quantify how sensitively an
enzyme’s local rate responds to changes in a substrate,
product or effector. In this case B is a product of v2 and a
substrate for v3, so Fig. 3 shows ev2

b (thick light grey line)
and ev3

b (thick medium grey line).
The crux of GSDA now lies in the comparison of the

values of the response coefficients with the elasticities of the
enzymes that are directly connected to the clamped
metabolite. In Fig. 3, these values differ, i.e. R

J12
b aev2

b

and R
J345
b aev3

b . In other cases, they will be seen to agree.
However, before comparing them in detail, first we have
to present the GSDA of all metabolites for the four
models.
The graphs in Fig. 4 present the results of the GSDA on

models I–IV. To avoid clutter, the graphs are not
annotated but they follow the same convention as Fig. 3:
light grey is used for supply and medium grey for demand,
response coefficients are drawn with dashed lines and
elasticities with thick lines. The only additional piece of
information required is that of an allosteric modifier
elasticity (ev1

c in Fig. 4c with C clamped, as only model
III has the feedback loop). This is drawn in a thick dark
grey line to set it apart from the supply and demand
elasticities. At a branch point, where there is more than one
supply or demand flux (e.g. for metabolite A in Fig. 4d),
their sum is indicated by a dash-dotted line; here, the
intersection of the total supply and total demand rate
characteristics determines the steady-state concentration of
the intermediate.
The graphs in Fig. 4 contain a wealth of information.

Having shown how to create them using GSDA, the next
section deals with their interpretation.

4. Interpretation of generalised supply–demand analysis

graphs

Rate characteristics generated by GSDA can be inter-
preted on four levels, i.e. differences in the rate character-
istic shapes as one proceeds from one metabolite to the
next in the pathway, comparison of elasticity and response
slopes, identification of points of functional differentiation
and homeostasis, and finally, refined analysis through
partial response coefficients.

4.1. Differences in rate characteristic shapes

The first assessment criterion of GSDA merely looks at
the general shapes of the supply and demand rate
characteristics and is not yet concerned with elasticities
and response coefficients. In model I (Fig. 4a) all enzymes
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Fig. 4. Generalised supply–demand analysis of the systems depicted in Figs. 1 and 2. The concentrations of A–D were clamped in turn and varied to

generate the supply and demand rate characteristics, as described in the text. The supply rate characteristic is drawn in light grey, that for the demand in

medium grey. The steady-state concentration of the clamped metabolite is indicated by a vertical dotted line. The response coefficients of the supply and

demand blocks are indicated by black dashed lines. The elasticities of the supply and demand enzymes for the clamped intermediate they are directly

connected to are indicated by thick lines of the same colour as the rate characteristic. Model variants: (a) model I, (b) model II, (c) model III and (d) model

IV (see main text). In (c), the allosteric elasticity ev1
c is indicated by a dark grey thick line. For the branch point at A in (d), the rate characteristics,

elasticities and response coefficients are shown separately for each of the two demand fluxes; the dash-dotted line indicates their sum and its intersection

with the supply rate characteristic determines the steady-state concentration of A.
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have identical kinetics and the overall shapes of the rate
characteristics are similar for metabolites A–D. In models
II and III (Fig. 4b and c), however, the pattern for D is
different from those for A–C (which are still similar). This
means that the kinetic properties of enzyme 4 are such that
a site of regulation has been introduced into the system. In
this specific case the reason is that enzyme 4 has been made
insensitive to changes in the concentration of C (ev4

c � 0).
In general, such zero elasticities, whether towards substrate
or product, induce a change in the rate characteristic shape
because they shift the flux control to demand or supply,
respectively.



ARTICLE IN PRESS
J.M. Rohwer, J.-H.S. Hofmeyr / Journal of Theoretical Biology 252 (2008) 546–554 551
Overall, changes in the rate characteristic shapes thus
pin-point potential sites of regulation.
4.2. Comparison of elasticities and response coefficients

GSDA can be extended to a second level by comparing
the values of the elasticities and flux–response coefficients
at the steady-state point for each metabolite. From the
partitioned response property of control analysis (Kacser
and Burns, 1973)

RJ
p ¼ evi

p � CJ
vi

(3)

it follows that RJ
p ¼ evi

p if CJ
vi
¼ 1. This means that the

enzyme on which the intermediate acts directly must have
full control over its own flux. Note that in the context of
GSDA these fluxes and response coefficients are defined in
the modified system with the intermediate clamped, and not
for the complete (original) system. The reason for this is
that the rate characteristics themselves are generated with
such models that in turn clamp each of the intermediates.

Fig. 4 shows that in general response and elasticity
coefficients differ. There are, however, a few notable
exceptions. The first of these is the trivial case of the first
and last metabolites in the chain (A and D for models I–III;
A, C and D for model IV), which take part in a reaction
that either consumes a clamped source metabolite or
produces a clamped sink metabolite. Consider models I–III
(Fig. 4a–c), for example, where ev1

a ¼ R
J1
a and ev5

d ¼ R
J5
d .

This is understandable because the supply block for A and
demand block for D each consist only of a single enzyme.
Similarly, in model IV (Fig. 4d), ev1

a ¼ R
J1
a , ev4

c ¼ R
J4
c and

ev6
d ¼ R

J6
d . That ev1

a aR
J1
a in Fig. 4c has to do with the

feedback loop and will be further discussed in Section 4.4.
Aside from the trivial case, any agreement between

elasticity and response coefficient points to a site of
regulation. Eq. (3) shows that the response coefficient can
equal the elasticity either if the control coefficient is one (as
discussed above), or if the elasticity is zero (which
effectively makes the value of the control coefficient
irrelevant). The first case obtains, for example, in Fig. 4c
with C clamped, where ev1

c ¼ R
J123
c (feedback loop with

CJ123
v1
¼ 1). Here, C can be classified as a ‘‘regulatory

metabolite’’ with respect to its supply block because the
flux response of this supply towards the clamped metabo-
lite concentration is exactly the same as the activity
response (i.e. elasticity) of the enzyme directly affected by
the clamped metabolite. The flux–control coefficient of one
causes the flux response to be transmitted fully through the
block. That metabolites such as C in this example could
also be regarded as ‘‘regulated’’ in the context of the whole
pathway is discussed in Section 4.3.

The second case (zero elasticity) obtains, for example, in
Fig. 4b and c, where ev4

c ¼ R
J45
c � 0. Such a zero elasticity

confers flux control (in the complete system) to that
particular block and results in functional differentiation of
the system, which is further discussed in Section 4.3.
When a branch point exists (such as for A in model IV),
the elasticities and response coefficients are compared for
each branch flux separately. Thus, Fig. 4d (metabolite A)
shows that for flux J234 (the lower of the two demand
fluxes), ev2

a ¼ R
J234
a , while for flux J56 (the higher of the

demand fluxes), ev5
a aR

J56
a . This means that A is a

regulatory metabolite for the branch J234 (the effect of a
change in its concentration is transmitted perfectly along
the branch since CJ234

v2
� 1), while this is not the case for

the other branch J56.

4.3. Functional differentiation and homeostasis

SDA has shown that when one block (say, demand)
controls the flux through a pathway, the other (say, supply)
will determine and control the concentration of the
intermediate (Hofmeyr and Cornish-Bowden, 2000). Such
a pathway has been termed ‘‘functionally differentiated’’ as
flux and concentration control are functions of different
blocks. Complete flux control by a supply or demand block
(over the whole pathway) can easily be identified by a zero
response coefficient (i.e. block elasticity) of that block
towards the intermediate (e.g. R

J45
c in Fig. 4b or c). The

response coefficient of the other block (R
J123
c ) will then

determine the degree of homeostasis in the intermediate:
the larger its numerical value, the better the homeostatic
buffering.
Model III (Fig. 4c) has been discussed in detail as an

example of a functionally differentiated system in the
context of SDA (Hofmeyr and Cornish-Bowden, 1991,
2000), and the arguments will not be repeated here. Suffice
it to say that the properties of the feedback elasticity ev1

c ,
which equals R

J123
c here, set the steady-state concentration

of C and determine its degree of homeostatic buffering. In
this sense, the steady-state concentration of C can be
regarded as ‘‘regulated’’. Why C can be considered a
‘‘regulatory’’ metabolite when considering the supply block
in isolation has been discussed above.

4.4. Multiple routes of interaction and partial response

coefficients

When two or more direct routes of interaction exist from
a clamped metabolite to a particular supply or demand
block, GSDA can be further refined by dissecting the
response coefficient into partial response coefficients. An
example is the GSDA around metabolite C in Fig. 1, where
C can affect both enzymes 1 and 3 directly (the former
through allosteric inhibition, the latter through product
inhibition). Here the total response coefficient can be
written as

RJ123
c ¼ ev1

c CJ123
v1
þ ev3

c CJ123
v3
¼1RJ123

c þ3RJ123
c . (4)

The terms on the right-hand side of Eq. (4) are known as
partial response coefficients and quantify the contribution
of each interaction to the total response coefficient.
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Fig. 5 now illustrates how the supply–response coeffi-
cient is split up into partial response coefficients for rate
characteristics around B and C in model III. First consider
C (Fig. 5b). Comparison with Fig. 4c shows that the supply
response coefficient is completely dominated by 1R

J123
c , i.e.

all of the regulation occurs through the feedback loop and
inhibition along the main chain of the pathway is
negligible.

A more interesting scenario unfolds for B (Fig. 5a). A
comparison with the total response coefficient in Fig. 4c
reveals that this time the response coefficient is dominated
by 3R

J12
b (i.e. the route of interaction on the demand side

of B)! This means that the inhibition of the supply flux in
the face of increasing B is not transmitted along the main
chain through E2 and A to E1, but rather along E3, C, via
ev1

c to E1. The scenario for A is similar to that of B, in that
R

J1
a ¼

2R
J1
a and 1R

J1
a � 0.

An important conclusion from this section is that in all
cases where multiple routes of interaction exist from an
intermediate to a supply or demand block, GSDA can
quantify and graphically visualise the importance of each
of these routes. Moreover, if for the flux–response
coefficient of a particular block with respect to an
intermediate, any partial response coefficient via another

block is non-zero, this indicates that there is additional
communication between the supply and demand blocks,
and consequently Eq. (2) cannot be used to calculate the
block control coefficients. Likewise, the response coeffi-
cients generated by GSDA (see dashed lines in Fig. 4c for A
and B) do not correspond to block elasticities.

5. Discussion

This paper has described GSDA as a method for
identifying and characterising regulatory metabolites in
kinetic models of cellular pathways. The method can be
generally applied to complex networks. The approach
involves clamping each of the variable species of the model
in turn and varying their concentration over a range in a
parameter scan. The rate characteristics of supply and
demand of that particular species are then generated and
plotted, together with straight lines representing the
elasticities of the enzymes directly connected to the
clamped intermediate, and the response coefficients of
the supply and demand blocks. GSDA can provide the
following information about a pathway:
�
 Any change in the overall shape of the rate character-
istics as one proceeds downstream along a pathway
identifies a potential site of regulation (Section 4.1).

�
 Regulatory metabolites can be identified by comparing

the values of the flux–response coefficient of supply or
demand towards the intermediate concentration with
the elasticity of the enzyme(s) in the supply or demand
block that directly sense the intermediate concentration.
When these values agree and are non-zero, the
metabolite is termed ‘‘regulatory’’ because the flux–con-
trol coefficient in the block of the enzyme on which the
clamped intermediate acts is equal to one (Section 4.2).
Such metabolites can be identified by visual inspection
of the rate characteristics (see Fig. 4), or program-
matically by searching for species where the difference
between the two coefficients (expressed as an angle in
polar coordinates) is less than a small threshold value.

�
 When both the flux–response coefficient of a particular

supply or demand block and the elasticity of the
corresponding supply or demand enzyme for the
intermediate become very small, this leads to functional
differentiation. The result is a shift of flux control (in the
complete system) to that block, and the magnitude of
concentration control is then determined by the proper-
ties of the other block (Section 4.3). Also, the sum of the
absolute values of the supply and demand elasticities
determines the degree of homeostasis of the intermediate
in the face of varying supply and demand—the greater
the sum, the smaller the concentration–control coeffi-
cient, and the better the homeostatic buffering (see
extensive discussion in Hofmeyr and Cornish-Bowden,
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2000). Again, both functional differentiation and home-
ostasis can be identified by inspection of the rate
characteristics.

�
 Finally, when more than one direct route of interaction

exists from an intermediate to a supply or demand
block, the quantitative importance of each of these
routes can be assessed by calculating the partial
response coefficients (Section 4.4).

There are obvious inter-relations between GSDA and the
‘‘modular’’ (Schuster et al., 1993) or ‘‘top-down’’ (Brown
et al., 1990; Quant, 1993) approaches to control analysis.
As explained in Section 3.2, the response coefficients
generated by clamping an intermediate are actually
equivalent to ‘‘block’’ (Fell and Sauro, 1985) or ‘‘overall’’
(Westerhoff et al., 1983) elasticities in the complete system.
Moreover, if there are no additional routes of communica-
tion between the supply and demand blocks other than
through the intermediate, all enzymes belonging to a
particular block (say, supply) form a ‘‘monofunctional
unit’’ (Rohwer et al., 1996), which means that the co-
response coefficient of the intermediate and the flux
through the demand block (see Eq. (1)) will not depend
on the position in the supply block where the system is
perturbed. In the context of the present paper, however, the
advantages of GSDA are twofold: first, by considering the
behaviour of the system over a wide range, a broader
picture of its control and regulation (e.g. in the face of
varying demand loads) is obtained than from a mere set of
control and elasticity coefficients at a single steady-state
point; and second, the rate characteristics and associated
elasticity slopes provide a visual picture that allows easy
inference of which block controls the flux, to what extent
the intermediate is homeostatically buffered, etc.

Several papers from the group of Westerhoff have
investigated the problem of how different routes of
regulation can be dissected in cellular systems. Bruggeman
et al. (2005) have developed a method for quantifying the
time-dependent contributions of parallel regulatory path-
ways affecting activity of glutamine synthetase in Escher-

ichia coli. For steady-state systems, the method of
regulation analysis (ter Kuile and Westerhoff, 2001;
Rossell et al., 2006) dissects how much of the change in
the flux through an enzyme is due to metabolic and how
much due to hierarchical (i.e. transcriptional and transla-
tional) regulation. These approaches have in common that
they focus on multiple routes of regulation of a single step.
They contrast with our approach of GSDA, which focuses
in turn on every metabolite in the system and the extent to
which it affects all the reactions or reaction blocks that
produce and consume it.

While SDA has been around for some seven years, the
novelty of GSDA lies in its application to every variable
species of a kinetic model of a cellular system. For large
models, there may not be a logical choice of regulatory
metabolite around which to perform an SDA, or it may not
be obvious. Regulatory metabolites identified with the
method presented here provide a point of entry for further
detailed analysis of large models. Moreover, in addition to
identifying regulatory metabolites, GSDA characterises
them in terms of flux control and homeostasis in the system
and provides a useful visualisation in terms of rate
characteristics.
We are fully aware that a method such as GSDA cannot

claim to be ‘‘general’’ by only addressing small models with
four intermediates. We have tested the initial scalability of
the method to networks comprising 15–20 reactions. The
method currently works with linear and branched path-
ways, but in future will also have to deal with moiety-
conserved cycles. Since control analysis of conserved cycles
has been worked out (Hofmeyr et al., 1986; Sauro, 1994;
Kholodenko et al., 1994), the problem should be tractable
in principle. The aim of this paper is thus to present the
idea; for lack of space, fleshing out the details is left for
further work.
In conclusion, the strength of GSDA lies in the fact that it

provides a computational tool for the systematic functional
analysis of large ‘‘silicon-cell’’-type kinetic models. The tool
has been implemented in the ratechar module of the
PySCeS software. By including all model species in the
analysis, human bias is removed and regulatory metabolites
can be readily identified. In subsequent refined analyses, the
modeller can then focus on and zoom in on those parts of
the model exhibiting regulatory behaviour.
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