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Abstract

With the emergence of multifaceted bioinformatics-derived data, it is becoming possible to merge biochemical and physiological

information to develop a new level of understanding of the metabolic complexity of the cell. The biosynthetic pathway of de novo

pyrimidine nucleotide metabolism is an essential capability of all free-living cells, and it occupies a pivotal position relative to

metabolic processes that are involved in the macromolecular synthesis of DNA, RNA and proteins, as well as energy production

and cell division. This regulatory network in all enteric bacteria involves genetic, allosteric, and physiological control systems that

need to be integrated into a coordinated set of metabolic checks and balances. Allosterically regulated pathways constitute an

exciting and challenging biosynthetic system to be approached from a mathematical perspective. However, to date, a mathematical

model quantifying the contribution of allostery in controlling the dynamics of metabolic pathways has not been proposed. In this

study, a direct, rigorous mathematical model of the de novo biosynthesis of pyrimidine nucleotides is presented. We corroborate the

simulations with experimental data available in the literature and validate it with derepression experiments done in our laboratory.

The model is able to faithfully represent the dynamic changes in the intracellular nucleotide pools that occur during metabolic

transitions of the de novo pyrimidine biosynthetic pathway and represents a step forward in understanding the role of allosteric

regulation in metabolic control.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The bacterium Escherichia coli is the most thoroughly
studied microorganism, due primarily to its relative ease
of manipulation in the laboratory and its extensively
documented genetic and physiological organization. The
amount of information and experimental data available
on this enteric bacterium has made it the choice of a
e front matter r 2005 Elsevier Ltd. All rights reserved.
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recently created alliance for cellular simulation, the
International E. coli Alliance (Holden, 2002). The
ultimate objective of this project is to create a virtual
simulation of its cellular and molecular functions. This
simulation will be comprehensive and capable of
defining accurate responses to external manipulation in
a way that reflects the in vivo metabolic functions and
behavior of the living cell.
The functionally integrated, virtual E. coli is being

constructed by combining currently available data with
new directed research that is designed to augment
accurate model building. Compilation and integration
of several decades of molecular data is a monumental
task in which this information has to be merged with
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that of genomics, transcriptomics and proteomics
through step-wise mathematical simulations. The im-
portance of simulating systemic metabolomics at the
cellular level cannot be overstated. Understanding the
interactions of all the cellular components will facilitate
and guide future work, bringing a new level of under-
standing to how molecular life functions are integrated
at the cellular level.
From the early work analysing sensitivity coefficients

within a pathway (Schlosser and Bailey, 1990) to the
more recent efforts to deal with the data pouring in from
the E. coli genome sequencing project (Segre et al., 2003;
Reed et al., 2003; Allen et al., 2003; Reed and Palsson,
2004), a growing need to integrate diverse experimental
observations has resulted in the application of modeling
as a powerful tool in the study of metabolic processes.
Research has focused on cellular mechanisms of control
such as the study of DNA replication (Hansen et al.,
1991), regulation of transcription (Bremer et al., 2003;
Covert and Palsson, 2002) and chemotaxis (Shimizu and
Bray, 2002). Specific approaches have been applied to
some metabolic pathways, as is the case of a model of
attenuation in the tryptophan biosynthetic pathway
(Koh et al., 1998) and the lac operon (Vilar et al., 2003).
While many of the metabolic modeling efforts with E.

coli have been focused on improving conditions for a
desired commercial application (Kramer et al., 2003;
Alvarez-Vasquez et al., 2002; Lee et al., 2002), more
basic research has been performed on the metabolic
pathways of different organisms (Raghunathan et al.,
2004; Forster et al., 2003; Schilling et al., 2002). These
and other works have contributed greatly towards a
general understanding of the regulatory mechanisms of
cellular networks and its applications. However, to our
knowledge, there is no body of literature specifically
dedicated to analysing E. coli metabolism from a pure
description of the mechanisms controlling networks in a
wild-type environment.
It is important to understand the detailed contribu-

tion and coordination of the diverse mechanisms
controlling metabolic pathways. De novo nucleotide
metabolism synthesizes purines and pyrimidines, the
building blocks of nucleic acid polymers which consti-
tute a fundamental component of the central metabolic
processes of all living organisms. In E. coli, de novo
pyrimidine synthesis begins with the condensation of
ammonia or glutamine with bicarbonate and ends in the
formation of UMP, UTP, CTP, dCTP and dTTP.
Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) and
carbamoyl phosphate synthetase (CPSase, EC 6.3.5.5)
are considered the key allosterically regulated enzymes
controlling metabolic flux through the pathway. CPSase
is feedback-inhibited by UMP and activated by
ornithine, and ATCase, in turn, is inhibited by UTP
and CTP and activated by the purine nucleotide ATP
(Wales and Wild, 1999). The CPSase product, carba-
moyl phosphate (CP), is shared by both the arginine and
the pyrimidine biosynthetic pathways, establishing
ATCase as the first step unique to pyrimidine de novo
biosynthesis and its primary regulatory control.
To undertake the integration of a mathematical

model of the de novo pyrimidine biosynthetic pathway,
a system of coupled ordinary differential equations was
formulated to describe the kinetic behavior of each of
the enzymic reactions in the pathway. In the case of the
allosterically controlled enzymes that initiate de novo
pyrimidine biosynthesis, kinetic parameters were in-
cluded to simulate the changes in activity induced by the
allosteric effectors. In addition, the differential equa-
tions describing the biosynthesis of the first two enzymes
in the pathway need to contain expressions for the
decrease in enzyme synthesis in the presence of elevated
pyrimidine nucleotide concentrations. As appropriate,
the kinetic parameters for the model and the form of
kinetic expressions for individual enzymes in the path-
way were optimized from an extensive body of research
in our laboratory and that published by others. In this
study, an initial mathematical model of the regulation of
de novo pyrimidine biosynthesis in E. coli is described.
Underlying is the significant contribution that allosteric
control puts into the rapid physiological adaptation of
the cell to external stimuli and environmental changes.
2. Theory

2.1. Enzyme kinetics

As more genomes are sequenced, it becomes apparent
that living systems are characterized not only by the
complement of genes they carry but also by the
mechanisms of control conducted at the molecular level.
The most important intracellular molecules that are
regulated include enzymes, intracellular substrate pools,
allosteric ligand effectors, cofactors and, ultimately, the
metabolic products. The ability of molecular systems to
regulate the complex interactions among these mole-
cules constitutes the basis of cellular homeostasis. The
kinetics of the reactions catalysed by enzymes becomes
the standard by which cellular metabolic systems have
to reach and maintain metabolic steady-states.
Several parameters need to be considered when

analysing enzyme kinetics: (1) the rate or maximum
velocity of the reaction (vmax) an enzyme can reach when
it is saturated with substrate; (2) the Michaelis constant
(KM) or its equivalent (S0.5) that equals the substrate
concentration at which the rate of the reaction is half the
vmax; and (3) the turnover number (kcat) or number of
substrate molecules converted to products per second.
There are a variety of kinetic mechanisms, both

homotropic and heterotropic, by which enzyme activ-
ities can be regulated. Substrates can affect the rate of a
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reaction by cooperative interaction at the active site of
an enzyme (homotropic effects), as can reaction
products and other small molecules when present in
adequate concentrations. In contrast, heterotropic
effectors can change the kinetics by interaction at
allosteric sites distinct from the active site. Under
physiological conditions, substrate concentrations near
their KM facilitate the rapid adjustments of reaction
rates. In some cases, there are mechanisms of homo-
tropic cooperativity in which the affinity of interdepen-
dent catalytic sites is altered after a substrate molecule
binds. Allosteric effectors, on the other hand, are
present in a wide range of concentrations in the cell
and they are readily available to bind to allosteric sites,
causing structural rearrangements of the enzymes that
may be transmitted as altered conformations of the
active sites (Ricard and Cornish-Bowden, 1987). In-
tracellular concentrations of allosteric effectors provide
an important form of metabolic regulation by providing
a system that allows for rapid adjustments in biochem-
ical flux by affecting the activity of one or more enzymes
in the pathway.
The rates of individual enzymic reactions have been

studied since the 19th century. Initial studies of Adrian
Brown, Emil Fischer and others, were followed by the
mathematical formulations proposed by Leonor Mi-
chaelis and Maud Menten in 1913 (Cornish-Bowden,
1997). The progress of a reaction showing typical
hyperbolic first-order substrate saturation kinetics can
be simulated by the following differential equation
(Eq. (1)):

d½A�

dt
¼

vmax � ½A�0

KM þ ½A�0
, (1)

where [A] is the substrate concentration.
Even though it is relatively straightforward to

formulate sets of simultaneous first-order nonlinear
differential equations, the large number of parameters
that need to be assigned makes it time-consuming and
error-prone to manually perform the calculations. In the
studies discussed here, the powerful differential equation
solver of MathematicaTM (Wolfram Research Inc.)
NDSolve was used. Using NDSolve to simultaneously
solve arrays of differential equations through multistep
integration methods, allows for successive points on a
curve to be found with iterations of slope evaluation
(Mulquiney and Kuchel, 2003).
To simulate the decrease in substrate concentration,

an equation describing the relevant steady-state kinetic
parameters (vmax, KM) and initial substrate concentra-
tion has been formulated. The Michaelis–Menten
equation is traditionally used to show the time-
dependence of substrate consumption and product
formation of one such reaction. The numerical analysis
and simulation of metabolic pathways comprising more
complicated enzymic behavior is far more challenging.
2.2. Pyrimidine biosynthesis repression/derepression

When E. coli is grown under conditions of minimal
supplied nutrients, most biosynthetic pathways are
activated, including that of de novo pyrimidine bio-
synthesis. Growth under derepressing conditions will
continue at steady state as long as the nutrient source
and environmental conditions remain constant. In the
case of pyrimidine biosynthesis, the addition of uracil to
the media results in repression of the de novo pyrimidine
pathway and production of pyrimidine nucleotides is
maintained by the nucleotide interconversion or the
salvage pathways. Under these conditions, de novo
biosynthesis has been estimated to account for less than
20% of pyrimidine nucleotide production (Christopher-
son and Finch, 1978). It has been established that the
level of the intracellular pools of CTP and UTP
correlate with the levels of expression of the pyr genes
(Jensen et al., 1984). As uracil is depleted, the
concentration of enzymes involved in de novo biosynth-
esis returns to higher levels.
Derepression experiments were conducted with E. coli

cells grown in minimal media supplemented with
50 mgml�1 uracil until they reached middle exponential
growth levels (�8� 107 cellsml�1), as verified spectro-
photometrically. Actively growing cells were quickly
harvested by centrifugation and immediately resus-
pended in media without uracil. Nucleotide pools were
extracted at the defined time intervals by sample
precipitation with 6% trichloro-acetic acid and nucleo-
side triphosphates (NTPs) were separated and quantified
using HPLC within 48 h after extraction (Wales et al.,
1988).
Using this experimental approach in our laboratory

has allowed us to demonstrate the physiological role
that allosteric regulation of ATCase has in controlling
flux through the de novo pathway. This type of
information, in conjunction with the transitional dy-
namics of derepression, provides the essential metabolic
parameters that must be detailed in a valid model.
3. Model development

Mathematically describing each individual enzyme is
the necessary first step in the simulation of the flux
through a metabolic pathway. The model described here
has been developed to study the dynamic transitional
effects of repression/derepression of pyrimidine bio-
synthesis. The de novo biosynthetic pathway, shown in
Fig. 1, encompasses a series of nine reactions that lead
to the production of UTP and CTP. CPSase (EC
6.3.5.5), ATCase (EC 2.1.3.2), dihydroorotase (DHOase,
EC 3.5.2.3), dihydroorotate dehydrogenase (DHOde-
Hase, EC 1.3.3.1), orotate phosphoribosyl transferase
(OPRTase, EC 4.1.1.23), and orotidine-50-phosphate
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Fig. 1. Schematic representation of de novo biosynthesis in E. coli. The reactions catalysed by the pyr enzymes bring about the formation of UMP

from aspartate, ammonia/glutamine, bicarbonate ATP and PRPP. Further reactions convert UMP to UTP and CTP. 1, carbamoyl phosphate

synthase; 2, aspartate transcarbamoylase; 3, dihydroorotase; 4, dihydroorotate dehydrogenase; 5, orotate phosphoribosyl transferase; 6, orotidine-50-

phosphate decarboxylase; 7, uridylate kinase; 8, nucleoside diphosphate kinase; and 9, CTP synthase. The dashed arrow lines denote specific

allosteric effects.
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decarboxylase (ODCase, EC 2.4.2.10), catalyse the
formation of UMP. UMP is phosphorylated to UDP
by uridylate kinase (UMP kinase, EC 2.7.4.-) and UDP
is subsequently transformed into UTP and CTP,
through the action of nucleoside-50-diphosphate kinase
(NDKinase, EC 2.7.4.6) and CTP synthase (EC 6.3.4.2).
The definition of the mathematical functions, or rate

equations, of the biochemical steps of this pathway must
take into consideration the presence or absence of
allosteric effects. In the first biochemical step (r1), the
reaction rate for the formation of CP, which is catalysed
by CPSase (E1), is described by Eq. (2). In this equation
and all those following, the term vmaxi refers to the
apparent maximal velocity of the reaction i. Eq. (2)
includes terms for the binding of bicarbonate (Kbc, Kibc)
and glutamine (Kq) and for the inhibitory effect exerted
by UMP intracellular concentration (Kiump) (Rubino
et al., 1986):

r1 ¼
vmax 1E1 � bc � glu

ð1þ ump=KiumpÞðKibc � Kq þ Kq � bc þ Kbc � glu þ bc � gluÞ
.

(2)
CP condenses with aspartate in a reaction (r2) to yield
carbamoyl aspartate (CA), as described by

r2 ¼
vmax 2E2 þ 2cp �

aspnH2

KnH2
i2

1
1þatp=Katp

� �
1þ ctp

Kctp
þ

ctp�utp
Kutp

� �
þ

KnH1
m2

cp
� aspnH1 þ cp �

aspnH2

KnH2
i2

� � .

(3)

This reaction is catalysed by ATCase (E2) and the
mathematical expression includes a Hill coefficient (nH1)
that describes the cooperativity between the substrates
and a second Hill coefficient (nH2) for cooperativity
under substrate inhibition (LiCata and Allewell, 1997).
Additionally, a term for the allosteric effects is included.
The rate of formation of CA is favorably affected by
ATP, whereas CTP and UTP synergistically inhibit the
enzyme.
The rate of change in concentration of CP is

then given by the rate of its formation in reaction (1)
minus the rate of its depletion in reaction (2), as seen in
Eq. (4). An analogous expression can be developed
for the rate of change of concentration of CA,
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seen in Eq. (5)

d½cp�

dt
¼ r1 � r2, (4)

d½ca�

dt
¼ r2 � r3, (5)

where r3 is the rate of formation of dihydroorotate from
CA

r3 ¼
vmax 3 � ca

Km3 þ ca
. (6)

Analogous to r3, the expressions for the remaining
steps in the pathway are much simpler, as they do not
include cooperativity or heterotropic interactions.
Rather, as seen below, they follow simple Michaelis–
Menten kinetics

d½dho�

dt
¼

vmax 3 � ca

Km3 þ ca
�

vmax 4 � dho

Km4 þ dho
, (7)

where dho represents the dihydroorotate formed in the
reaction catalysed by DHOase serving as substrate for
the following reaction, catalysed by DHOdeHase

d½oro�

dt
¼

vmax 4 � dho

Km4 þ dho
�

vmax 5 � oro � prpp

Km5 þ oro � prpp
, (8)

where oro and prpp are the substrates of the reaction
catalysed by OPRTase

d½omp�

dt
¼

vmax 5 � oro � prpp

Km5 þ oro � prpp
�

vmax 6 � omp

Km6 þ omp
, (9)

where omp is orotate-50-phosphate

d½ump�

dt
¼

vmax 6 � omp

Km6 þ omp
�

vmax 7 � ump

Km7 þ ump

þ
vmax 9 � ura � prpp

Km9 þ ura � prpp
, ð10Þ

where ump is the product yielded by the decarboxylation
of omp by ODCase; and ura represents the external
uracil incorporated into the cell from the culture media

d½utp�

dt
¼

vmax 7 � ump

Km7 þ ump
�

vmax 8 � utp

Km8 þ utp
�

gpyr � ctp

KMp þ ctp
,

(11)

d½ctp�

dt
¼

vmax 8 � utp

Km8 þ utp
�

gpyr � ctp

KMp þ ctp
, (12)

where gpyr and KMp are the pyrimidine utilization rate
and constant of pyrimidine utilization, respectively.
These two terms are based on the assumption that the
UTP and CTP produced are part of an intracellular pool
that is constantly used to supply metabolic demands.
The products utp and ctp are formed by the action of the
enzymes NDKinase and CTP synthase, respectively

d½ura�

dt
¼ �

vmax 9 � ura � prpp

Km9 þ ura � prpp
. (13)
In Eq. (10), there is a term for the synthesis of ump

from uracil, when uracil is supplied in the external
medium. Since experimental evidence indicates that an
E. coli culture, upon changing the media from excess to
absence of uracil, undergoes a metabolic adjustment
that is reflected in the intracellular pools of NTPs, a
simple expression for the degradation of the uracil was
also included in Eq. (13).
In Eqs. (11) and (12), there are terms for the loss of

UTP and CTP, respectively, as the nucleotides are
incorporated into RNA. For both UTP and CTP, it was
assumed that the rate of loss of NTPs into RNA was
proportional to the growth rate of the organism as we
assumed growth was limited by some other, external
component. In future formulations of the model, the
effects that the different NTP pools have on growth rate
and the ability of the organism to adapt to different
environments will be incorporated.
Since regulation of the pathway depends not only on

biochemical regulation, but also on rates of synthesis
and degradation of the CPSase and ATCase, expres-
sions for the UTP- and CTP-dependent enzyme synth-
esis and enzyme degradation were included

d½E1�

dt
¼

Ke1

ðKe1 þ umpÞ � kdeg1 � E1
; (14)

d½E2�

dt
¼

Ke1 � 60

ðKe2 þ ctp þ uraÞ � kdeg1 � E2
; (15)

where Ke1 and Ke2 are synthesis coefficients, and kdeg1 is
a degradation coefficient. These terms account for a
simplification of additional genetic parameters involved
in enzyme synthesis that are not included in this model.
Importantly, however, the concentrations of the feed-
back regulatory molecules are also present in each of the
expressions.
A total of 11 reaction rates and equilibrium expres-

sions were formulated as differential expressions and
integrated using the NDSolve algorithm (Mathemati-
caTM). Initial conditions were estimated, as described
above, for steady-state conditions with a doubling time
of 42min.

3.1. Parameter estimation

Modeling cellular systems is a complex task and,
often, metabolic networks have a large number of
parameters in relation to the available experimental
data. An attempt to precisely estimate all the parameters
in a metabolic pathway involves tracing every indepen-
dent variable over a large number of individual
perturbation experiments. It is obvious that the techni-
ques to achieve this for most metabolic networks are
not currently available and, therefore, several
parameters had to be computationally estimated.
Kinetic parameters and relative enzyme and metabolite
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Table 1

List of parameters used in the model

Parameter Definition Value Reference

vmax1 vmax for carbamoyl phosphate synthetase 0.38mmol l�1 Calculated from Robin et al. (1989)

bc Intracellular concentration of bicarbonate 8mM Estimated

glu Intracellular concentration of glutamine 4mM Calculated from Neidhardt (1987)

asp Intracellular concentration of aspartate 4mM Calculated from Neidhardt (1987)

prpp Intracellular concentration of phosphoribosyl pyrophosphate 0.18mM Estimated

Kibc Bicarbonate inhibition constant 0.75mol l�1 Estimated

Kiump UMP inhibition constant 0.98mol l�1 Estimated

Kbc KM for bicarbonate 36mM Calculated from Robin et al. (1989)

Kq KM for glutamine 22mM Calculated from Robin et al. (1989)

vmax2 vmax for aspartate 24mmol l�1 Calculated from LiCata and Allewell (1997)

KM2 KM for aspartate 19.8mM From LiCata and Allewell (1997)

Katp ATP binding constant 4.8mM Estimated

Kctp CTP binding constant 4.1mM Estmated

Kutp UTP binding constant 4.9mM Estimated

nH1 Hill coefficient 2.3 From LiCata and Allewell (1997)

vmax3 vmax for dihydroorotase 24.7mmol l�1 Calculated from Jensen et al. (1984)

KM3 KM for dihydroorotase 0.7mM Estimated

vmax4 vmax for dihydroorotate dehydrogenase 6.4mMl�1 Calculated from Jensen et al. (1984)

KM4 KM for dihydroorotate dehydrogenase 0.24mM Estimated

vmax5 vmax for orotate phosphoribosyl transferase 0.6mmol l�1 Calculated from Jensen et al. (1984)

KM5 KM for orotate phosphoribosyl transferase 9.9mM Estimated

vmax5 vmax for OMP decarboxylase 0.8mmol l�1 Estimated

KM6 KM for OMP decarboxylase 32mM Estimated

vmax7 vmax for UMP kinase 1.18mmol l�1 Estimated

KM7 KM for UMP kinase 19.8mM Estimated

vmax8 vmax for nucleoside diphosphate kinase 0.28mmol l�1 Estimated

KM8 KM for nucleoside diphosphate kinase 8.4mM Estimated

vmax9 vmax for uracil phosphoribosyl transferase 2.8mmol l�1 Estimated

KM9 KM for uracil phosphoribosyl transferase 0.08mM Estimated

Ki2 Substrate inhibition coefficient for ATCase 2 Estimated

Kdeg1 Degradation coefficient for CPSase 0.12 Estimated

Kdeg2 Degradation coefficient for ATCase 0.072 Estimated

nH2 Second hill coefficient 2 From LiCata and Allewell (1997)

grate Growth rate 42min�1 Measured

KMg Coefficient for growth rate 396 Estimated

gpyr Pyrimidine utilization rate 0.4min�1 Estimated

KMp Constant for pyrimidine utilization 5.8 Estimated

Ke1 Synthesis rate coefficient for CPSase 36 Estimated

Ke2 Synthesis rate coefficient for ATCase 120 Estimated

Summary of the parameters used to define the rate equations modeling the allosteric response on pyrimidine de novo biosynthesis in E. coli.
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concentrations are listed in Table 1. Kinetic constants
such as vmax and KM were estimated from experimental
data using standard techniques (Beale, 1988). In brief,
an algorithm was developed which minimized the sum of
the squares of the residuals between the output of the
model (nucleotide concentration) and experimental data
at discrete time points. The model consisted of the set of
differential equations that describe the dynamics of
pyrimidine biosynthesis. Model input parameters were
the set of unknown kinetic constants. The local
optimization was performed in MathematicaTM via a
built-in function (FindMinimum) which employed the
following methods: Conjugate Gradient, Gradient,
Levenberg-Marquardt, Newton and Quasi-Newton. As
the solution was a local optimum, the parameter
estimates obtained were dependent upon judicious
choice of the initial conditions.
4. Model testing and validation

Whenever possible, individual estimates from the
model were compared to available experimental data
to validate the mechanistic steps in the model, forms of
the mathematical expressions, and estimates of model
constants. Several examples of model verification are
described.

4.1. Case 1: CPSase

A step-wise validation of the model resulted in
confidence that each of the differential equations was
appropriately formulated. Validation was obtained by
comparing the simulated results with available experi-
mental data. Rate 1, shown in Eq. (2), represents the
rate of CP synthesis by CPSase in the absence of other
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Fig. 2. Simulation of CPSase inhibition by UMP vs. experimental

data. (A) Data published by Robin et al. (1989). No uracil added (K),

15 mgml�1 (&), 25mgml�1 (’) and 50mgml�1 (n) of uracil. (B)

Simulation of the rate of formation of CP as a function of the

concentration of glutamine, both, in the presence of 50mgml�1 of

UMP ( � � � � ) and its absence (—).

Fig. 3. Simulation of ATCase kinetic and allosteric behavior,

compared to experimental data. (A) Saturation curves for ATCase

unregulated (K) and its response to allosteric effectors: ATP (J), CTP

(.) and CTP+UTP (,), as previously published by Wales and Wild

(1999). (B) Mathematical simulation of the allosteric effects in

ATCase: kinetic sigmoidal behavior in the absence of allosteric

effectors (—); activation kinetics in the presence of ATP ( � – � );

inhibitory effect by CTP ( � � � � ); or UTP+CTP (– –).
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enzymes in the pathway. The form of the equation
mimics that of Michaelis–Menten but with an inhibition
term included to account for the experimentally
observed effects of UMP on CPSase activity. Simulation
of the inhibitory effect of UMP on CPSase activity was
achieved via this mathematical formulation as shown in
Fig. 2. In the simulation, the reaction reaches saturation
at approximately the same glutamine concentration as
has been determined experimentally. In addition, the
extent of the inhibitory effect is reproduced precisely as
previously reported (Robin et al., 1989).

4.2. Case 2: ATCase

ATCase presents a more complex system given the
multiple homotropic and heterotropic effects to which it
is subjected. Previous studies have agreed on the
cooperative behavior of substrate binding and the extent
of allosteric effects induced by ATP, CTP, and UTP
acting synergistically with CTP (Wild et al., 1989). The
mathematical description of the enzymic reaction, rate
2, given in Eq. (3) accurately mimics all of these effects,
as shown in Fig. 3.

4.3. Case 3: correlation between CPSase and ATCase

enzyme levels and nucleotide pools

It has been established that the level of the
intracellular pools of CTP and UTP correlate with the
levels of expression of the pyr genes (Jensen et al., 1984);
thus, the proposed model should accurately couple CTP
and UTP levels with synthesis and degradation rates of
the relevant enzymes. As seen in Eqs. (14) and (15),
while the enzyme synthesis rate, the first term in
each expression, is reduced in the presence of UMP
and CTP, degradation of enzymes remains constant.
Fig. 4 illustrates the changes in the UMP, CTP and UTP
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Fig. 4. Nucleotide levels change in the cell and the accompanying

dynamic response of enzymes 1 and 2 (CPSase and ATCase,

respectively). (A) UMP levels in response to derepression ( � � � � )

and the corresponding response in CPSase levels (—). (B) UTP ( � � � � )

and CTP (– –) derepression levels and the corresponding over-

expression response of ATCase (—).
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levels in the cell and the accompanying dynamic
response of enzymes 1 and 2 (CPSase and ATCase,
respectively).

4.4. Case 4: repression and derepression of CTP and

UTP

Typically, the repression/derepression transition of
the pyrimidine pathway enzymes causes a change in the
size of the NTP pools. After the perturbation, CTP and
UTP pools drop rapidly due to depletion. CTP levels
drop to 66% and 46% their initial level for the
allosterically regulated vs. the unregulated enzyme,
respectively. UTP drops to 51% and 30%. As the
pyrimidine pathway derepresses, the intracellular con-
centrations of UTP and CTP recover to their normal
levels. Fig. 5 shows the dynamic response of the model
to an initial high level of uracil that is rapidly consumed.
Experimentally, this was achieved by taking repressed
cells to a derepressed state by removing the uracil from
the medium. Our model satisfactorily simulates the
derepression behavior observed under these conditions.
In addition, by simply removing the allosteric effect
terms of ATP, UTP and CTP in rate 2, a second model
was created that mimics the behavior of the cell without
allosteric control of the second enzyme in the pathway
(just catalytic subunits). Comparison of model predic-
tions with and without allosteric subunits in the enzymes
(holoenzyme and catalytic subunit simulations, respec-
tively) qualitatively captures the experimentally ob-
served differences in dynamic response of nucleotide
pools in wild-type cells and those with their allosteric
subunits deleted. As seen in Fig. 5, response of cells
deficient in allosteric control is more dramatic compared
to those with allosteric control. The complexity of the
interrelation of all the equations makes this a finely
tuned and sensitive model. Subtle changes in the kinetic
parameters are being tested and used to predict out-
comes of changes in experimental conditions.
5. Discussion

Several models have been published describing diffe-
rent metabolic pathways in E. coli, beginning with models
15 years ago describing the whole cell, but omitting
control of metabolic pathways (Schlosser and Bailey,
1990). Currently, there are several models that describe
specific pathways in E. coli such as the tryptophan bio-
synthetic pathway (Koh et al., 1998), replication
(Hansen et al., 1991), and chemotaxis (Shimizu and
Bray, 2002), all of which use computational tools in an
attempt to understand mechanisms of cell regulation
and control.
This study presents a computational simulation that

includes allosteric regulation of the de novo pathway of
pyrimidine biosynthesis. As opposed to standard kinetic
models, this treatment considers temporal variations in
the nutrient uptake and in concentration of allosteric
effectors. This type of dynamic modeling allows the
physiological adaptation of the cell, as evidenced in
response of the nucleotide pools, to be evaluated. Not
only is allosteric control of de novo pyrimidine
biosynthesis simulated, but also the model formulation
potentially allows for the prediction of differences in
adaptation when the cells are grown under different
environments.
The equations used to simulate the overall pathway

response were tested individually and validated relative
to existing literature data. In the case of the first
reaction, which is catalysed by CPSase, the model
accounts for the allosteric inhibition effected by UMP
binding. In this simulation, saturation is achieved with
comparable glutamine concentrations as has been
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Fig. 5. Simulation of NTP pools response after pyrimidine pathway derepression. (A1–4) The experimental results reflect a sharp drop in the levels of

CTP and UTP rapidly after derepression. (B1–4) The corresponding simulation shows remarkable similarity. Holoenzyme (—); catalytic subunit

( � � � � ).
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observed experimentally (Robin et al., 1989). The
addition of uracil as an environmental variable and
parameterization of the model yielded an optimal
kinetic response.
A similar approach was utilized to evaluate the
behavior of the model with respect to ATCase activity.
The kinetic optimization in this case was more
demanding, since the second enzyme of the pathway is
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subject to the action of multiple homotropic and
heterotropic controls. The critical step was to optimize
the parameters and equations such that the regulatory
lag caused by substrate cooperativity is seen as a
sigmoidal path in a saturation curve. Multiple iteration
steps had to be taken before each of the allosteric effects
was simulated in agreement with the experimental
observations from our laboratory. Successful simulation
of the physiological response, including allosteric effects
of the first two reactions, allowed us to simplify the
addition of the remaining kinetic expressions and focus
on the NTP levels as the objective of the refinement
process.
The expression levels of the first two enzymes in the

pathway were found to respond to the derepression
simulation by a transient overexpression of CPSase, and
an increase in steady-state levels in the case of ATCase.
The timing and extent of these events correlated directly
with the shift in the nucleotide pools. It is interesting to
hypothesize about the roles of these two enzymes in the
regulation of the flux through the metabolic pathway.
CPSase levels respond to the concentration of its
regulator UMP. ATCase levels rapidly build to increase
the decaying levels of UMP and, ultimately, results in
control of pyrimidine nucleotide homeostasis. CP, the
product of the reaction catalysed by CPSase, is a highly
unstable metabolite that, in addition, has to be
partitioned between the pyrimidine and arginine biosyn-
thetic pathways. While other organisms have multi-
enzyme complexes that effectively channel this substrate
through several catalytic sites (Lue and Kaplan, 1970;
Williams et al., 1971; Coleman et al., 1977), this is not
the case with E. coli. Studies performed with Pyrococcus

abyssi provide an example of CPSase and ATCase that
associate to form a transient complex or pseudo-
compartment, thus facilitating transfer of the unstable
CP produced from one catalytic site to the other
(Purcarea et al., 1999). However, while there is evidence
of substrate channeling in E. coli during protein
synthesis, purine biosynthesis, carbohydrate phosphor-
ylation through the phosphotransferase system and
aspartic acid metabolism (Jakubowski, 1995; Rudolph
and Stubbe, 1995; Rohwer et al., 1998; James and Viola,
2002), to our knowledge there are no reports of
channeling involving pyrimidine metabolism. More
recently, the process of metabolic channeling has been
investigated in other biological systems using mathema-
tical modeling (Maher et al., 2003), thus opening the
door to the directed study of these and other metabolic
control processes through computer simulations.
In the case of pyrimidine biosynthesis, integration of

individual kinetics into the complete pathway required
the development of a way to quantify the result of
parameterization at each step of the metabolic pathway.
Repression/derepression experiments have substantiated
the role of the allosteric regulation in NTP pools
consumption and production in E. coli, acting in concert
with the important contribution of genetic control.
The rapid drop in the observed CTP and UTP levels
upon starvation for pyrimidines indicates the initial
depletion of their intracellular concentrations, which
was followed by a recovery as de novo biosynthesis
of pyrimidines replenished the pools. The most sensi-
tive component of this approach was the estimation
of local minima used for the parametric calculations.
Using a few selected parameters at a time, the sums
of the squares of the residuals of the experimental data
and the nucleotide fractions at specific times were
calculated. Following this concept, the minimal set of
parameters that were capable of capturing the allosteric
response to uracil-induced repression/derepression was
identified.
The initial drop in nucleotide pools corresponded

to the depletion of pools as pyrimidine nucleotide
synthesis shifted to the de novo pathway. Initially, the
concentrations of CTP and UTP synthesized from uracil
were sufficient to keep ATCase repressed. Imme-
diately after uracil depletion, the NTP levels dropped.
Allosteric inhibition and genetic repression were
relieved and the activation of the enzyme was evidenced
by the de novo synthesis of nucleotides as their pools
stabilized at the normal physiological levels. Our model
faithfully captured this behavior. In fact, the simulations
showed the difference in the extent of the NTP levels
responses between the holoenzyme and catalytic
subunits that was observed experimentally. This demon-
strated that the experimental results obtained for
changes in CTP and UTP pool levels could be emulated
by including allosteric parameters for CPSase and
ATCase.
Even though the model proposed here is sufficient

to approximate the allosteric responses in the de
novo pyrimidine pathway, one would imagine that
much of the control in vivo relies on the transcrip-
tion of the pyr regulon. This model included a very
simple mathematical formulation to modulate enzyme
synthesis levels in response to pyrimidines; however,
it is anticipated that additional parameters have to be
defined and experimental data obtained that serve
to validate those formulations, including measure-
ments of intermediates. In addition, use of metabolic
control analysis tools will yield valuable informa-
tion about the contribution of each of the steps to
the overall flux through the pathway and aid in
developing and testing new hypotheses, such as those
of metabolite channeling and pseudo-compartmentali-
zation. A full model of the control of this pathway
will contribute to the development and testing of
hypotheses concerning the mechanisms used by the
cell to regulate production of metabolites that are
energy intensive. Our ability to make predictions of
the outcomes of manipulating related cellular processes,



ARTICLE IN PRESS
M. Rodrı́guez et al. / Journal of Theoretical Biology 234 (2005) 299–310 309
for application in medicine and biotechnology, should
be greatly enhanced.
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