Radiat Environ Biophys (2000) 39:265-273

© Springer-Verlag 2000

ORIGINAL PAPER

Tomas Radivoyevitch

Time course solutions

of the Sax-Markov binary eurejoining/misrejoining model

of DNA double-strand breaks

Received: 23 December 1999 / Accepted: 1 July 2000

Abstract The Sax-Markov binary eureoining/misrejoin-
ing (SMBE) model is a stochastic representation of Sax’s
breakage-and-reunion mechanism of misrejoining DNA
double-strand breaks (DSBs). In this model, to approxi-
mate DSB misrejoining probabilities that decrease with
increasing distance, the nucleus is treated as a collection
of n isolated nuclear subvolumes called sites; DSB free
ends within the same site interact with a probability that
is independent of distance, and DSB free ends within dif-
ferent sites never interact. In our previous work, SMBE
steady-state solutions were used to estimate n from a
combination of high-dose PFGE (pulsed-field gel electro-
phoresis) data and moderate-dose chromosomal aberra-
tion data. Here, analytic SMBE transient solutions (i.e.,
time courses of DSBs and misrejoinings) are derived and
used to estimate n from various sets of misrgjoining DSB
kinetic data. The time courses are multiexponentials with
rate constants K, 6k, 15k, ... j(2j—1)k corresponding to
different nuclear site states and not different types of
DSBs. For example, the k component corresponds to nu-
clear sites with two DSB free ends and thus only one pos-
sible rejoining interaction, and the 6k component corre-
sponds to sites with four DSB free ends and thus six (four
choose two) potential rejoining interactions — four of
these six potential interactions lead to a final state of two
misrejoinings and the other two of six lead to afinal state
of correct repair (unrejoinable DSBs are not represented
in the SMBE model). The SMBE time course solutions
provide site number estimates that fall in the range of
n=10-100 for premature chromosome condensation
(PCC) data and n=1000 for PFGE data.
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Introduction

The Sax-Markov binary eurejoining/misrejoining (SMBE)
model [1] is a stochastic representation of Sax’s break-
age-and-reunion mechanism of misrejoining DNA dou-
ble-strand breaks (DSBs) [2]. It is a model that focuses
exclusively on active DSBs with free ends that either eu-
rejoin (rejoin correctly by chance) or misrgjoin. The
SMBE model, previously solved only in steady state [1],
is solved herefor all times. The solutions are time course
predictions of DSBs and misrejoinings after acute doses
of ionizing irradiation.

As an approximation to a model where DSB misre-
joining probabilities decrease with increasing distance
[3], the SMBE model treats the nucleus as a collection of
n isolated nuclear subvolumes called sites [4]. DSB free
ends within the same site interact with a probability that
is independent of distance, and DSB free ends within dif-
ferent sites never interact. Steady-state SMBE solutions
have been used to estimate the site number n from a
combination of high-dose PFGE (pulsed-field gel elec-
trophoresis) data [5] and moderate-dose chromosomal
aberration data [6]; see [1]. The time course solutions
derived here alow estimation of n from kinetic data.

The paper begins with brief reviews of the Sax subset
(SS) [7] and SMBE [1] models, followed by a discussion
of SSfailure in the limit of low doses. Matrix exponen-
tials and a flow graph approach are then used to find
time courses for the simplest misrejoining SMBE sub-
graph, a five-state Markov model that approximates the
SMBE model for doses low enough that complex misre-
joinings (involving three or more breaks) are not created.
The flow graph method is then extended to solve arbi-
trarily large finite SMBE subgraphs. The solutions in
this case are multiexponentials with rate constants pre-
dicted to follow the sequence k, 6k, 15k, ... j(2j—-1)K,
where K is an adjustable model parameter. The exponen-
tials in this sequence correspond to different nuclear site
states and not different types of DSBs. For example, the
K component corresponds to nuclear sites with two DSB
free ends and thus only one possible rejoining interac-
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tion, and the 6k component corresponds to sites with
four DSB free ends and thus six (four choose two) poten-
tial rejoining interactions — four of these six potential in-
teractions lead to a final state of two misrejoinings and
the other two lead to a final state of zero misrejoinings
(unrejoinable DSBs are not modeled). The SMBE time
course solutions are used to: (a) show that a determinis-
tic equivalent of the SMBE model does not exist, and (b)
form estimates of n from various sets of misrejoining
DSB kinetic data.

Background
The SS model

Valid only in the limit of high doses because it ignores
chance rejoining events of correct DSB free ends (i.e.,
euregjoining), the SS model [7] is
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Here, Uy(t) is the per-cell average number of inactive
DSBs — inactive DSBs can be thought of as “protein
splinted” single entities that always repair correctly apart
from some localized alterations in sequence; U,(t) is the
per-cell average number of active DSB free ends — an ac-
tive DSB is defined here as a pair of two DSB free ends
not necessarily of the same origin; M(t) is the average
number of misrejoinings per cell — all active DSBs even-
tualy misrgjoin in the SS model; k,, is the binary misre-
joining rate constant for total active DSB free endsin the
whole nucleus; p is the initial fraction of DSBs that are
active to misrgjoin; and U(0)=GD isthe initial number of
all DSBs where G=40 DSBs per Gy per human cell irra-
diated during the Gy/G, part of the cell cycleand D isthe
dose in Gy delivered acutely just before t=0. Please note
that U(t)=U,(t)+(1/2)U,(t) corresponds to the total num-
ber of DSBs at time t. The SS model is consistent with
PFGE X-ray data (human fibroblasts; 80 Gy X-ray) [5]
when A=1.1 per hour, «,~2.6x10~* per hour and P=0.33

[7].
The SS model was originally developed with the en-
tire nucleus viewed as one well-mixed site. To obtain a

per-site SS model we divide Egs. 1-3 by the number of
sites n and let uy(t)=U,(t)/n, u,(t)=U,(t)/n and m(t)=
M(t)/n be the per-site average numbers of inactive DSBS,
active DSB free ends and misrejoinings, respectively.
The per-site SS model is then
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In terms of averages for the whole cell these solutions
become

Uy (t) = U, (0)eA; Uy(t) =
and
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where k=nk,, is the per-site misrgjoining rate constant;
see Egs. 5 and 6. Since the parameters k and n appear in
the solution only as the ratio k,~=k/n, individual esti-
mates of k and n are not possible using the SS model.
The SMBE model allows estimation of 1.

U,0 _ U0
U,(Ok,t+1 ~ U,(O)(k /n)t+1

The SMBE model

The SMBE model [1] is a stochastic (Markov) extension
of the SS model [7] that includes the accidental binary
eurejoining of active DSB free ends. Other Markov mod-
els of misrgjoining DSBs [8, 9] are stochastic extensions
of adifferent classical kinetic model [10] corresponding
to a Revell DSB misrgjoining mechanism [11]. The
SMBE model describes the dynamics of the probability
that a nuclear siteisin a specific state.

Let us define a nuclear site to be in state {j,i,m} if it
has j total active DSBs (i.e., pairs of DSB free ends), i
active DSBs destined to misrgjoin because their true
mates have already misrejoined (these active DSBs are
really two free ends of two separate DSBS), j—i active
DSBs still capable of eurgjoining, and m misrejoinings.
This state can undergo up to four types of transitions cor-
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Fig. 1 The first few nodes (site states) of the SMBE model. A
typical node {j,i,m} in this graph contains the probability mass at
timet that asite hasj active DSBs, i active DSBs destined to mis-
rejoin, and m misrejoinings. The rate constants of probability mass
transfer label the edges. As time evolves, the probability mass
moves from the j-axis toward itsfinal distribution on the m-axis

responding to four types of rejoining reactions: eurejoin-
ing within the j—i pool, misrejoining within the j—i pool,
misrejoining within the i pool, and misrejoining between
the i and j— pools. For a site in state {j,i,m}, the rate
constants of these four state transitions are k (j—i) to state
{j-Li,m}, k2(j—)(j—-1) to state {j—1,i+1,m+1}, ki(2i-1)
to state {j—1,i-1,m+1} and k4i(j—) to state {j—1,i,n+1},
each of these being k times the number of potential
free end interactions. The SMBE model can be viewed
(Fig. 1) asagraph of nodes (site states) and arrows (state
transitions) where a typical node {j,i,m} contains the
probability mass P(j,i,m;t) that asiteisin state {j,i,m} at
time t. Each node is also associated with a differential
equation, e.g., at the node { 2, 1, 1} we have

APELILY - 12p(30,0:0)
+2kP(3,1,1t) — (k +4& +x )P(2,1,1t).

Thus, the graph of Fig. 1 is a linear system of coupled
differential equations whose solution allows computation
of the SMBE mean value time courses
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The SMBE model does not treat inactive DSBs stochas-
tically because they do not affect misrejoinings and be-
cause Poisson inactive DSBs remain Poisson under lin-
ear repair. The SS solution for the mean number of inac-
tive DSBs can therefore be assumed when fitting the
SMBE model to total DSB-rejoining data.

SS model failure

The SS model is inappropriate at low to moderate doses
for severa reasons discussed elsewhere [1, 7] including
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steady-state arguments against the SS misrejoining dose-
response shape and magnitude, and kinetic arguments re-
garding the insensitivity of measured DSB-rejoining
times to large increments in dose. An additional (though
related) reason derives from the low-dose extreme situa-
tion where most sites have no active DSBs, and a negli-
gible number of sites have more than one. In this situa-
tion, the SS mean number of active DSBs per cell is

U - U,
2 T U0, +1

while, from Fig. 1, the SMBE mean number of active
DSBsis

Ua(t) =

Ua) =02 e

Thus, for a cell with just one active DSB, the SS model
(with k,~=2.6x10- per hour [7]) suggests that the rejoin-
ing half-life will be 1,,,=1/(2k,)=80 days, while, if
=400 [1] so that k=nk,,~0.1 per hour, the SMBE model
suggests a much more realistic 7,,,=In(2)/k =7 h.

Time course solutions of the SMBE model

Matrix method

The 5-node SMBE subgraph in the left panel of Fig. 2,
valid in the limit of moderate to low doses where misre-

joinings involve fewer than three DSBs, is a linear
system [12]

% X(t) =kAX(t) and Y(t) = CX(t)

where
ERRY:
A=Lo 0 %6 0 oc=(83319)
0 4 -10]°7\00012
00 0 1 00

MO P(0,0,0,t)0
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X(t) = Ek3(t)g= [P(2,0,0;t)0
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The solution, written compactly using eA<t=I+Akt+
A2(kt)22+ ..., is

Y(t)=CerxtX(0)=CeMMktX(0)=CMe/*t M-1X(0)

where A is the matrix of eigenvalues and M is the corre-
sponding matrix of eigenvectors, i.e., AM=MA. The ini-
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Fig. 2 The 5-node SMBE sub-
graph (left panel) and its corre-
sponding block diagram (right
panel). The outputs of the /s
blocks (integrators) in the right
panel are the state variables x,
to X5 of the left panel. Theini-
tial distribution of active DSBs
is created by the Dirac delta
function (t). Connections cor-
responding to the output matrix
C, which maps the states into
per-site average active DSBs
and misrejoinings, are omitted
for visual clarity

tial condition X(0)=[P, P; P, O O]' and the software
MATLAB then yield

a(to_ (0 gkt
o= 0R (")

+[1.2e7% +0.8e6 P

*{1.3-0.8e — 0,532
Thus, in the limit of low doses, misrejoinings and active
DSBs are expected to follow biexponential time courses
with rate constants that differ by afactor of six.

Y(t) =

Flow graph method

Laplace transforms [12, 13] will now be used in a flow
graph approach to solving the 5-node SMBE model. This
approach is extended to SMBE graphs of arbitrary size
in the next section.

The 5-node SMBE subgraph can be represented by
the block diagram shown in the right panel of Fig. 2.
Here sisthe Laplace variable, boxes labeled 1/s are inte-
grators, and the outputs of the integrators are the state
variables x;. This system, equivalent to system 7 less the
output relation Y=CX, corresponds to the matrix equa-
tion
& X(t) =kAX(1) + BS(t) ©)
where X(0") is a vector of zeros and J(t) is a Dirac delta
function, which, upon integration of Eq. 8 between t=0"
(just before t=0) and t=0* (just after t=0) gives
X(0")=B=[P, P, P, 0 Q]' equal to the initial state of
system 7. Thus, the 5-node SMBE autonomous system
with nonzero initial conditions (Eq. 7) is now being
viewed as a completely equivalent input driven system
with zero initial conditions (Eq. 8), the input being the
impulse function d(t). This perspective is useful in the
flow graph approach that follows.

Since SMBE subgraphs are linear systems, each state
variable x;(t) can be decomposed into

x(t) = %Xij(t)

where x;;(t) is the contribution to state x; due to probabili-
ty mass that traversed the input matrix element P;. Be-

ginning with Py and ending with P,, we now consider
each of these contributions.

Probability mass that traverses P, goes directly into x;
and nowhere else, so Xo(t)=0 for i>1. From Fig. 2 the
Laplace transform of x;(t) iS X19(S)=Py/s. Thus x;o(t) isa
step function with height P,. However, because x,(t) cor-
responds to site states with no active DSBs and no mis-
rejoinings, it contributes nothing to the outputs and can
therefore be ignored.

Probability mass that goes through P, contributes to
X4(t) and x,(t). As mentioned above, only the latter of
these is of interest. The Laplace transform of this contri-
bution is X,;(S)=P,/(St+K), SO Xy, (t)=P;et. The state X,(t)
contributes to u,(t) but not to m(t).

Mass that traverses P, contributes to each of the five
states. Again, we can ignore the path to x,. The remain-
ing four contributions are

_ P P 2K

X3(8) = ﬁ X(8) = ES+26K E( S+K )
0P o 4« 0P O 4 \(k

)—(42(3)_|:|S+6KD(S+K) %9 = Hsve s +10)\'s |

Mason’s gain formula, a very practical tool for generat-
ing transfer functions by inspection [14], is useful here.
For example, to get X;,(S), the product of the boxes along
the forward path between J(t) and x5 (see Fig. 3) is di-
vided by 1 minus the product of the boxes that lie in the
loop that would be opened if the forward path were re-
moved. The product of the forward path is P,(1/s) and
the product of the loop factorsis—6k(1/s) so

__ by _ B
X2(8) = Ty ~ s+ &
To form the other transfer functions, we use the fact that
the transfer function of two transfer functionsin seriesis
equal to the product of the transfer functions (note that
multiplications in the Laplace domain correspond to con-
volutions in the time domain). Thus, since the path from
X5 t0 X, has a transfer function

k@ls) _ 4k

1-(«)A/s) ~ s+k'
the overall transfer function to x, is the product

0P O %«
X(9) = Gsx e 05+ K )
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Fig. 3 A comparison of u (t) and
m(t) for the SS (dotted) and
SMBE (solid) models when
k=0.1 h-1. Left panel For high
doses[eg., u,(0)=3] the SSand
SMBE models are similar except
for eurgjoining. Right pand For
low to moderate doses [e.g.,
u,(0)=0.3] the kinetics of the SS
and SMBE solutions differ mark-
edly. Throughout, an SMBE
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In this manner transfer functions to each of the states can
be determined. Note that transfer functions to states cor-
responding to the same number of active DSBs, here
X50(S) and x4,(s), differ only by a constant in the numera-
tor, so the corresponding time domain functions (the im-
pulse responses) also differ by only a multiplicative con-
stant. This fact is exploited extensively in an algorithm
(below) that solves arbitrary-sized SMBE subgraphs.

To convert the Laplace domain solutions into time do-
main solutions we use partial fraction expansions. Since
X35(9) is already in its partial fractioned form, its inverse
Laplace transform is, by inspection, xg,(t)=P,e*®<t. To
expand X,,(S), and thus alSo X,,(S)=2x,(S), we write

x,,(s) = 2_[_2 ) 0A 0,040
X2 Us+6k hs+k Ds+6KD Ds+KD

and find the residues A; and A, using the formula
AE(SPy) Xo0(9) |s= P where p, is the kth pole,

A =R 25)= P2/
and

p =2 e f=Rers)
Thus,

Xoo(t) = —P,(2/5)e 5k t+P,(2/5)e Kt
and

Xgo(t) = —P,(4/5)e5xt+P,(4/5)ext
Our last task isto partial fraction

P 2K
Xsp(8) = Ds+—2 s+K)(K§)
_O0A 0,0A 0,080
Ds+6KD Ds+KD s O

The residues in this case are A;=P,(4/30), A,=—P,(4/5),
and A;=P,(4/6), so

Xsp(t) = B((2/3) = (41 5)ekt +(4/ 30)e61),
Putting this all together we have

Ua(t) = 2Xgp(t) +X40(t) +Xo0(t) X4 (1)
= P,(4/5)e-5xt+P,(6/5)e < +P, et

2

0 30 0 3
Time (h) Time (h)

and

m(t) = 2Xs,(t) + X4 (t)
=BR((4/3)—(4/5)e*t —(16/ 30)e61)

in complete agreement with the matrix method result
given earlier.

Arbitrary-sized SMBE subgraphs

Let us define an SMBE subgraph of size J as the set of
al nodes and arrows reachable from {J,0,0}. Thus, the
model J=2 has 5 nodes, the model J=3 has 10 nodes, and
the model J=4 has 18 nodes, see Fig. 1. How large
should J be to adequately approximate the SMBE mod-
el? If the distribution of active DSBs per site is initialy
Poisson with mean u,(0) less than 4, over 99% of the
probability mass will remain within an SMBE subgraph
of size J=10. The data sets analyzed in this paper all
yield u,(0)<2, so the model J=10 should be adequate. In
general, a model is sufficiently large if extensions to
higher J values do not lead to noticeable changes in the
solutions.

To solve SMBE subgraphs of arbitrary size J we will
construct matrices K, and K, such that

(9)

where E is the column vector [1 e—*t ekt | e J@-D«1]’
and P’ is the row vector [P, P, P, ... P;]. Here, the first
two rows of K, and K,,,, with P and E truncated accord-
ingly, solve the SMBE model of size J=1, the first three
rows solve the model J=2, ... and the first J+1 rows (i.e.,
the full matrices) solve the model of size J. In the algo-
rithm described below, the rows are constructed indepen-
dently of one another. It therefore suffices to consider the
algorithm for just one row.

Suppose we wish to build the (J+1)th row of K, and
K. The first step is to compute partial fraction expan-
sions for a basis set of J+1 Laplace transforms
V[(stI(2I-1)K)...(st]'(2)'-1)k)] where j" ranges between
0 and J. For example, the basis set for the third row
of the K matrices is 1/(st6k), U[(s+6k)(stk)] and
V[(s+6k)(st+k)s]. The partial fraction expansions

u,()=P'K,E and m(t)=P'K ,,E

) 1
s+iei-m =

J
g S+J(2AJI -1k
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Fig. 4 The variance (lower
curve) and mean (upper curve)
of the per-site active DSB dis-
tribution. Initially Poisson with
means of 3 (left panel) and 0.5
(right panel), the distribution of
active DSBs per site becomes
underdispersed due to binary
reaction kinetics. As the mean
falls well below one the distri-
bution resumes a unit disper-
sion
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have trivial inverse Laplace transforms
i j(2j Dkt

e -
= A

Thus, computing the residues

_ 1
A= Il —kEk=Dx +]2) —1x

is equivaent to taking inverse Laplace transforms. The
residues for each of the basis functions are computed and
stored in an array. (Note that the set of basis functions
will differ for each row of the K matrices.)

In the next part of the algorithm, the (J+1)th row of
K, (or K,) is found by summing over all states
x={J'",I",m}, the product of ' (or m'), the vector of resi-
dues for j' from step one above, and the numerator of the
Laplace transform x,4(s). How do we visit al the states
and how do we compute the numerator of X,;(s)? The nu-
merator of X,4(S) is the product of al rate constants that
lie between {J,0,0} and {j',i',m}. Thus, we can start at
{J,0,0} and a numerator of 1, and we can push the rate
constants forward to the next nodes as cumulative prod-
ucts. Before each push, the numerator at that node is
used to compute the corresponding contributions to the
(J+1)th rows of the K matrices. The sequence of pushes
and node visitations is taken directly from the steady-
state SMBE algorithm [1]. An implementation of this al-
gorithm in Matlab is available upon request from the au-
thor, radivot@musc.edu. The case J=5 gives

0 0 0 [
10000 0 0 0
_ LD 1.2000 08000 0 0 0 U
=[D 1.2857 1.3333 0.3810 O 0 O
M 1.3333 1.6970 0.8205 0.1492 0 [
[D 1.3636 1.9580 1.2308 0.3949 0.05270
and
0 0 0 0 0 0
U5 o o o0 o o H
K _[1.333 -0.800 -0533 O 0 o U
m=[D.400 -1.029 -1.067 0.305 O 0 O
[B.429 -1.143 -1.455 0.703 0.128 0 [
(4444 -1.212 -1.741 1.094 0.351 —0.0470

Applying matrices like these (but with J=10) to Eq. 9
with P;=eva@ u(0)/j! gives the plots shown in Fig. 3.

30 40 50 0 10 20 30 40 50
Time (h)

From these plots, and from the equations above, it can be
seen that, as dose increases, so too does the contribution
of faster exponentials. In this manner the SMBE solution
emulates the SS solution; the SS-rejoining rate increases
with dose because u,(0) multiplies k. Note also from
these plots that, aside from differences in m(t) due to the
absence of accidental binary euregjoining in the SS mod-
el, the SS and SMBE solutions become increasingly sim-
ilar as doses increase.

Higher moments

The SMBE mean values m(t) and u,(t) were solved by
the flow graph method in the previous section. In this
section, our interest is in the time course of the variance
of the active DSB distribution. This time course, ob-
tained by applying matrix methods to the SMBE model
collapsed onto its j-axis, is compared to u,(t) in Fig. 4.
Active DSBs are seen here to become underdispersed
quite rapidly, returning to normal dispersion only after
the mean has become much less than one. Underdisper-
sion results because the SMBE rate constants increase
supralinearly as kj(2j—-1)>kj. Had the rate constants
been «j, corresponding to a classical kinetic rejoining
equation that was linear in the mean number of active
DSBs, the initial Poisson distribution would have re-
mained Poisson as it regressed toward the origin. In-
stead, since we have binary reaction kinetics, the upper
tail of the distribution is driven toward the origin faster
than for linear kinetics, so underdispersion results. At la-
ter times, as uy(t) approaches zero, P(0)=1-u,(t) and
P(1)=u,(t) so the variance u,(t)-u,(t) approaches the
mean u(t).

When forming classical kinetic equations for the
mean values of random variables (e.g., the SS model) it
is often necessary to make assumptions about higher mo-
ments. Typical assumptions include neglecting the vari-
ance relative to the mean, or assuming that it equals the
mean. Though such assumptions may be valid for certain
systems in certain operating regimes, there will be situa-
tions where the assumptions break down. A comparison
of the plotsin Fig. 4 indicates that the variance of active
DSBs depends on more than just the mean. In particular,



a mean of 0.5 corresponds to a variance less than 0.5 in
the left panel and a variance equal to 0.5 in the right pan-
el. Thus, for dosing situations where the variance cannot
be neglected relative to the mean, since the variance can-
not be reexpressed as a function of the mean, classical
kinetic (mean value) models with solutions identical to
the mean value time courses of the SMBE model are not
likely to be found.

Comparison to experimental data

Using nonlinear least squares, SMBE time course solu-
tions were fit to PFGE data (human fibroblasts; 80 Gy
X-ray) [5] as shown in Fig. 5. The fit yielded an estimate
of n=1000 nuclear sites. This estimate is substantially
higher than those obtained in the remainder of this sec-
tion using various sets of PCC (premature chromosome
condensation) data.

In PCC experiments using FISH (fluorescence in situ
hybridization), it is possible to measure time courses for
total, incomplete, reciprocal, and complex misrejoinings
[15, 16], as well as time courses for the percentage of
misrejoined cells with one, two, or more misrejoinings
[17]. How can we create SMBE outputs that approxi-
mate these quantities? Consider the 5-node system J=2
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Fig. 5 Total DSBs (*) and total misrejoinings (o) for human fibro-
blast (80 Gy X-ray) PFGE data [5]. Parameter estimates from the
SMBE time course fit are u,(0)=1.4, k=0.18, n=1000, A=1.7 and
p=0.47. Data points in all figures were taken visualy from the
publications
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shown in Fig. 2. In this system nf 2xg(t)=r(t) and nf
X,(t)=i(t) are the expected number of reciprocal and in-
complete exchange misrejoinings per cell, respectively,
where f=2.05(1-g)g and g is the painted fraction of the
genome [18]. For complex aberrations c(t), larger graphs
are required. In Fig. 1, let i(t) equal nf times the proba-
bility mass in al nodes defined by m=1, let r(t) equal nf
times twice the probability mass in the two nodes de-
fined by {j<2, i=0, m=2}, and let c(t) equal nf times the
m-weighted sum of the probabilities in all the other
nodes — note that c(t) includes some reciprocal and in-
complete exchanges, so these are merely approxima-
tions. Matrices K;, K, and K, generated in a manner simi-
lar to K, then yield

i(t)=nf P'K; E, r(t)=nf PK, E, and c(t)=nf P'K, E.

Similarly, the percentages of misrejoined cells with one,
two, or more misrejoinings can be obtained from analo-
gously defined matrices K;, K, and K. Together, these
model outputs allow estimation of the SMBE model pa-
rameters from PCC time course data.

A simultaneous fit of the SMBE model to the time
course data (human fibroblasts; 10 Gy gamma-rays) in
Figs. 1 and 3 of Brown et al. [17] gave the plotsin Fig. 6
and gave the estimate n=10. One interpretation of the
model’s failure for t>20 h is that active DSBs can be-
come unrejoinable with time, and complex misrejoinings
tend to require diffusion distances and rejoining times
that are larger than for reciprocal exchanges. Thus, some
of the probability mass that the SMBE model transfers to
complex misrgjoinings should really be transferred to a
trapping state (corresponding to unrejoinable DSBs not
in the SMBE model) indistinguishable from incomplete
exchanges (m=1 misrejoinings).

In modeling PCC lymphocyte data [15, 16] a problem
arises in that a substantial number of misrejoinings ap-
pear “instantaneously” after the 20-min chromosome
condensation period. In the present form of the SMBE
model, misrejoinings cannot rise rapidly, plateau, and
then rise again later with slower kinetics. Thus, consis-
tent with the modeling assumptions of Wu et al. [19], a
constant misrejoining offset has been added to r(t) in the
left panel of Fig. 7 and to each of i(t), r(t) and c(t) in the
right panel of Fig. 7. From these figures we see that the
SMBE model fails for complex aberrations. The data

Fig. 6 Human fibroblast

(10 Gy gamma-ray) PCC data
[17]. The SMBE model was fit
to datain both panels simulta-
neously. Left panel Time cours-
esfor total breaks (*) and mis-
rejoinings (+). Right panel The
percentage of misrejoined cells
with one misrgjoining (*), with
two misregjoinings (+), and with
more than two misrgjoinings (0).
The parameter estimates were
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Fig. 7 Human lymphocyte
PCC data[15, 16]. Here incom-
plete (o), reciprocal () and
complex (x) misrgjoinings are
plotted with their respective
SMBE model outputsi(t), r(t)
and c(t), respectively. The
parameter estimates were
u,(0)=0.5, k=0.14, n=83 in the
left panel (7 Gy, gamma-rays)
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seem to suggest that DSBs destined to become complex
misrejoinings slowly migrate into neighboring sites
where other active DSBs are more likely to be on other
chromosomes. The site number estimates are =83 (left
panel; human lymphocytes; 7 Gy gamma-rays) and =8
(right panel; human lymphocytes; 5 Gy carbon ions).
Greinert et al. [20] published PCC time course data
for dicentrics and excess fragments in human lympho-
cytes irradiated with 4 Gy of X-rays. Using a misrejoin-
ing offset as before, subtracting the final unrejoined
breaks from the excess fragment data, and replacing the
first four dicentric values by artificial values that go to
zero as t=0, an SMBE estimate of =66 was obtained.
Thus, to summarize the results of this section, SMBE
site number estimates seem to lie in the range of
n=10-100 for PCC data and n=1000 for PFGE data.

Discussion

Why does n differ between experiments? Different cell
types, LETs, assays, laboratories and failure of the
SMBE modeling assumptions are all plausible reasons.

Is there any evidence for the (k, 6k, 15k, ...) SMBE
hypothesis? For CHO cells in Gy/G,;, active DSB-
rejoining time constants inferred from dicentric yields in
delayed plating (7=75 min) and split dose (7=11 min) ex-
periments [21] lend some support to at least the (k, 6K)
part of the SMBE hypothesis, but other data using G, hu-
man fibroblasts [22] are less supportive (1=90 and 7=5
min). Wu et a. [19] modeled PCC data with the rate-
determining step in DSB rejoining placed downstream of
the broken end collision. Wu's model predicts that total
misrejoinings follow a single exponential and that the
misrejoining subcomponents i(t), r(t) and c(t) follow a
(k, 2k) hypothesis. Wu's model seems to fit the PCC
data as well as the SMBE model.

It has been observed that differences in LET lead to
differences in unrejoinable breaks at large times, but lit-
tle differences in time constants [16, 23]. These observa-
tions are consistent with the SMBE model — SMBE rate
constants do not depend on the initial distribution of ac-
tive DSBs.

In systems theory, a state variable is nonmeasureable
but observable if its time course can be estimated from
its influence on the dynamics of other quantities that are

o

6
Time (h)

measurable [12]. For example, active and inactive DSBs
are observable but nonmeasureable when the SS model
[7] isfit to PFGE data [5]. In fitting the SMBE model to
PCC data, it was implicitly assumed that nonmeasurable
PFGE*PCC- breaks and misrgjoinings do not alter the
dynamics of measurable PCC* breaks and misrejoinings.
If this is not the case, PFGE*PCC- quantities should
be included in models that are fit to PCC data, for they
may be observable. However, since it is likely that
PFGE*PCC- quantities operate on a smaller distance
scale (n=1000) than the PCC* quantities (n=10-100),
the model would then need some modifications. For ex-
ample, perhaps slow passage of PCC* quantities can be
allowed between neighboring sites, or perhaps big sites
can be defined as clusters of interacting little sites.
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Appendix

The following MATLAB program computes K matrices for arbi-
trary-sized SMBE graphs:

JVAL=10; % JVAL isthe Jvalue of the SMBE subgraph
Ku=zeros(JVAL, VAL +1); Km=zeros (JVAL, VAL+1);
Ki=zeros(JVAL, VAL +1); Kr=zeros (JVAL, VAL +1);
Kc=zeros (JVAL, JVAL+1);
for n=1:JVAL, %n is the row index for the K matrices
% Part |: compute the residue basis set
a=1:n;
a=a*(2*a-1);% aisthe vector of 2j choose 2 kappa coefficients
RES=[]; % initialize RES as an empty matrix
for j=n:—1:1, % start at the back of the flow graph and come in
A=poly(-a(j:n)); % convert root form to power form
[r p]=residue(1, A); % get the residues, 1=numerator, A=denom
res=[zeros(1, j) fliplr(r')];
RES=[RES,; req;
end %Note that the products of kappa's cancel out
A=poly(—{0 a]); % now do the last row in RES, i.e., j=0
[r p]=residue (1, A);
res=[fliplr(r')];
RES=[RES,; reg|;
% Part |1: use the residue basis set and SMBE graph to find
% u_a(t) and m(t) given that the site contains exactly n actives.
UT=n*RES(1,:); MT=0*res; % initialize the running totals
I T=0*res; %incomplete
RT=0*res; %reciprocal
CT=0*res; %complex



M=[zeros (1, n) 1]; % start with 1 in the nth node
for m=1:(n+1),
nM=zeros (m+1, n+1); % stack at the next m value
for J=(n+1):-1:2,
1=1;
while (I<=m)& (1<=J),
i=1-1; % and j are the math indices
j=31; % | and J are the matrix indices
nm1=(j—); % (eurejoin: eu within hopefuls)
nm2=2* (j—i)* (j——1); %(mis within hopefuls)
nM3=i* (2*i-1); %(mis within destined)
nm4=4* (j—i)*i; %(mis between hopefuls and destineds)
M(l, F1)=M(l, F1)+nm1*M(l, J);
UT=UT+({-1)*M(l, J-1)*RES(n+2-,3);
MT=MT+(m-1)*M(l, J-1)* RES(n+2:);
if (m-1)==1) IT=IT+(m-1)*M(l, 3-1)*RES(n+2-,>);
elseif (Mm-1)==2)&((j—1)<2)& (i==0)
RT=RT+(m-1)*M(l, }-1)*RES(n+2—,);
else CT=CT+(m-1)*M(l, F-1)* RES(n+2,:);
end
nM(l, 3-1)=nM(l, J-1)+nm4*M(l, J); % now do pushesto the
nM(1+1, 3-1)=nM(I+1, J-1)+nm2*M(l, J); % nM stack
if i>0,
nM(1-1, F1)=nM(I-1, 3-1)+nm3*M(l, J);
end;
M(l, J)=0;
I=1+1;
end; % whileloop on | and i
end; % for loop on Jand j
M=nM; %next M starts with what was pushed onto it
end % m loop
Ku(n, 1:(n+1))=UT; Km(n, 1:(n+1))=MT;
Ki(n, 1:(n+1))=IT; Kr(n, 1:(n+1))=RT; Kc(n, 1:(n+1))=CT,;
end% n loop
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