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Abstract

 

Objective

 

: In recent years, support has increased
for the notion that a subpopulation of brain tumour
cells in possession of properties typically characteristic
of stem cells is responsible for initiating and
maintaining the tumour. Unravelling details of the
brain tumour stem cell (BTSC) hierarchy, as well as
interactions of these cells with various therapies,
will be essential in the design of optimal treatment
strategies.

 

Materials and methods

 

: Motivated by this, we have
developed a mathematical model of the BTSC
hypothesis that may aid in characterization of brain
tumours, as well as in prediction of effective ther-
apeutic strategies, which can be further validated in
experimental and clinical studies. At the level of a
small number of cells, the model developed herein
is stochastic. For larger populations of cancer cells,
the model is handled from a deterministic approach.

 

Results and conclusions

 

: In the stochastic regime,
importance of a relationship between the likelihoods
of two distinct types of symmetric BTSC divisions
in determining BTSC survival rates becomes appar-
ent, consequently emphasizing the need for a set of
biomarkers that are able to better characterize the BTSC
hierarchy. At the large scale, we predict the importance
of the aforementioned symmetric division rates in
dictating brain tumour composition. Furthermore,
we demonstrate possible therapeutic benefits of
considering combination treatments of radiotherapy
and putative BTSC inhibitors, such as bone morpho-
genetic proteins, while reinforcing the importance

of developing novel treatment strategies that specifi-
cally target the BTSC subpopulation.

 

Introduction

 

While prognoses for many types of cancer have improved
in recent years as diligent research has led to better diag-
nostic and treatment techniques, brain tumours remain
consistently devastating in both adults and children.
Cancers of the brain and spinal cord are the second most
common cause of cancer mortality in children (National
Cancer Institute of Canada data: http://www.ncic.cancer.ca).
In adults, median patient survival time following diagnosis
of the most prevalent type of brain cancer, glioblastoma
multiforme (GBM), is a dismal 6–12 months, not signifi-
cantly improved upon over the last few decades (1). The
failure of standard treatment strategies consisting of
surgical resection followed by radiation and/or chemo-
therapy to substantially improve patient outcomes reflects
the fact that mechanisms driving human brain tumour
growth, as well as interactions of cancer cells with their
micro-environment and with therapeutics, are not yet
well understood. In order to explain clinical and experi-
mental results, including shortcomings of conventional
treatments, much recent research has focused on the study
of brain tumour development and growth in terms of
stem cell biology.

The cancer stem cell hypothesis states that tumours
are initiated and maintained by a (typically small) subset
of cancer cells in possession of certain defining properties
of stem cells – namely, the abilities to self-renew and to
produce differentiated cells of various lineages (2). Exist-
ence of acute myeloid leukaemia stem cells has been
firmly established [see Lapidot 

 

et al.

 

 (3) and Bonnet &
Dick (4)]; more recently, putative cancer stem cells have
been identified in many solid tumours, which include
breast (5), colon (6,7) and brain cancers (8–12). In 2003,
brain tumour cells expressing the CD133 cell surface
protein marker [also found on normal neural stem cells
(13)] were identified as brain tumour stem cells (BTSC)
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based on their exclusive ability to commence and support
tumour growth (11). These CD133

 

+

 

 cells, isolated from
human brain tumours, were able to generate tumours with
the phenotypic signature of the original human malignancy
when transplanted in small numbers (as low as 100) into
brains of non-obese diabetic/severe combined immuno-
deficient mice. Importantly, CD133

 

–

 

 cells were unable to
initiate tumorigenesis in mice, even when transplanted
in numbers on the order of tens of thousands. Such
demonstrations of tumorigenicity on xenografting into
immunocompromised mice remain the gold-standard assay
in identification and classification of cancer stem cells (14).

The unique ability of certain cells to both drive and
maintain tumour growth appears to be a function of these
cells’ capacity for two distinct types of self-renewal (15).
Stem cells can undergo symmetric self-renewal, cell division
in which both daughters possess the stem cell characteristics
of the mother stem cell, resulting in expansion of the stem
cell population, or asymmetric self-renewal in which one
stem cell (which we denote by S) and one progenitor cell
(denoted P) are produced [see, for example, fig. 2 of Dirks
(16)]. In terms of the mathematical model to be developed
herein, this translates to the assumption that symmetric
self-renewal occurs (represented schematically as 

 

S

 

 

 

→

 

 

 

S

 

+ 

 

S

 

) with some probability 

 

r

 

1

 

, while with probability 

 

r

 

2

 

a stem cell divides asymmetrically (

 

S

 

 

 

→

 

 

 

S

 

 + 

 

P

 

). In addition
to self-renewal, stem cells can permit symmetric prolifera-
tion, yielding two daughter progenitor cells (

 

S

 

 

 

→

 

 

 

P

 

 + 

 

P

 

)
with probability 

 

r

 

3

 

 = 1 – 

 

r

 

1

 

 – 

 

r

 

2

 

. The overall stem cell division
rate 

 

ρ

 

S

 

 represents the frequency with which each stem cell
undergoes any one of the aforementioned mitotic events,
and in general may depend on the cell populations.

Progenitor cells differ from stem cells in that they
have limited proliferative potential and limited ability to
differentiate. Typically, an early (relatively immature)
progenitor will divide into later (more mature) progenitors,
undergoing only several rounds of self-renewing cell
division before terminally differentiating. While the precise
mechanisms of this process are more complicated, the
important effect is an amplification of the number of
mature cells (denoted M) [these progenitor cells are
sometimes termed ‘transit amplifying’ cells (17)].

The question of how such cancer stem cells originate
is unresolved – they could potentially be the product of
genetic or epigenetic mutations in normal stem cells,
progenitors, or differentiated cells (18). While each of
these hypotheses remains viable, the first seems most likely
as stem cells have the longevity that may be necessary in
order to accumulate oncogenic mutations, and already
have functioning self-renewal pathways. Progenitors and
mature cells, on the other hand, are relatively short-lived
and would require that these self-renewal pathways become
activated (16).

While identifying the origins of cancer stem cells
remains important from many points of view, the cancer
stem cell hypothesis helps to explain certain phenomena
independent of these details. The fact that many patients
with metastasized cancer cells do not develop metastatic
disease can be accounted for by considering a paradigm
in which only the metastasis of cancer stem cells can
result in new tumour growth (18). Along similar lines,
treatments that aim to indiscriminately destroy tumour
cells in bulk may fail to consistently provide a cure because
they spare a subpopulation of cancer stem cells. Consistent
with the latter proposition is the observation that human
CD133

 

+

 

 glioma cells exhibit radioresistance due to
preferential activation of the DNA damage checkpoint
response – in particular, the fraction of CD133

 

+

 

 glioma
cells has recently been found to be enriched following
treatment with ionizing radiation, both 

 

in vitro

 

 and in the
brains of immunocompromised mice (19).

Another treatment possibility may soon emerge, as
Piccirillo 

 

et

 

 

 

al

 

. (20) have recently demonstrated that
certain bone morphogenetic proteins (BMPs) are capable
of inducing CD133

 

+

 

 human GBM cells to differentiate and
adopt a CD133

 

–

 

 cell phenotype, both in culture and, more
importantly, in the brains of mice (20). Thus, pharmacological
application of BMPs to brain tumours may direct BTSCs
to differentiate into cells that are more vulnerable to
traditional anti-cancer treatments (i.e. radiotherapy and
chemotherapy). It is becoming increasingly clear that,
under the brain cancer stem cell hypothesis, any potentially
curative therapy must target BTSCs. The depletion of the
cancer stem cell pool via induced differentiation represents
one promising strategy. A second approach may be to
design drugs that neutralize the key mechanisms that
lend BTSCs their capacity to drive tumour growth. In
particular, recent mathematical modelling has given support
to the notion that an increase in symmetric self-renewal of
cancer stem cells is a condition necessary to explain the
observed cell populations in colorectal cancer (21).

Other such continuous cell population dynamics
models have provided insights into the dynamics of stem
cell hierarchies, including the seminal work of Wichmann
and Loeffler on the haematopoietic system (22), Michor

 

et

 

 

 

al

 

. (23) in analysing the dynamics of treatment of
chronic myeloid leukaemia, and Johnston 

 

et

 

 

 

al

 

. (24) on
colorectal cancer. Several groups have undertaken mathe-
matical examinations of glioma behaviour independent of
the cancer stem cell hypothesis. Examples include the
work of Swanson and colleagues, who have applied a
reaction-diffusion model to account for the proliferation
and diffusion of a homogeneous population of glioma
cells in a heterogeneous brain domain (see, e.g. 25), and
that of Sander and colleagues, who have studied 

 

in vitro

 

glioma cell invasion using a continuous model in which
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core and invasive cancer cells are treated as distinct
subpopulations (26). The deterministic cell compartment
approach of Wichmann and Loeffler has subsequently
been adopted and modified by Ganguly and Puri to
describe brain tumour growth according to the cancer
stem cell hypothesis (27,28). Here, we instead develop a
discrete stochastic model in order to shed light on some
of the mechanisms driving brain tumour growth as well as
the implications of these mechanisms on treatment strategies.
Such an approach allows us to incorporate the inherent
stochasticity of biological phenomena and, more importantly,
allows for meaningful examination of small numbers of
cells, where a deterministic method fails. A similar technique
was employed, for example, in modelling cell populations
in normal murine epidermal homeostasis (29).

 

The model

 

Considering the three types of BTSC divisions with asso-
ciated probabilities discussed above, we define 

 

p

 

 (

 

n

 

S

 

, 

 

n

 

P

 

,

 

t

 

) as the probability that there are exactly 

 

n

 

S

 

 BTSCs and

 

n

 

P

 

 progenitor cells present at time 

 

t

 

. This probability is
governed by the following master equation:

(1)

with initial condition 

 

p

 

(

 

n

 

S

 

, 

 

n

 

P

 

, 0) = 

 

δ

 

(

 

n

 

S

 

, )

 

δ

 

(

 

n

 

P

 

, ),
where  and  are the initial numbers of stem and pro-
genitor cells, respectively. Note that 

 

p

 

(

 

n

 

S

 

, 

 

n

 

P

 

, 

 

t

 

) is indeed
the conditional probability 

 

p

 

(

 

n

 

S

 

, 

 

n

 

P

 

, 

 

t

 

 

 

|

 

 , , 0) of
observing the state (

 

n

 

S

 

, 

 

n

 

P

 

) at time 

 

t

 

, given ( , ) at
time 

 

t

 

 = 0. For simplicity, however, we drop the full notation
of the conditional probability [as is done, for example, by
van Kampen (30)]. The parameters 

 

Γ

 

S

 

 and 

 

Γ

 

P

 

 represent
rates of apoptosis of BTSCs and progenitors, respectively.
Exact solutions of equations such as eqn (1) are typically
unknown; consequently, numerical simulation is the method
of choice for obtaining solutions.

We have begun by formulating the stochastic master
equation, and our strategy will be to perform some analysis
on this before deriving from it a set of deterministic
equations describing the time evolution of the average
values of 

 

n

 

S

 

 and 

 

n

 

P

 

. While a study of these deterministic
equations is particularly appropriate and efficient when
large numbers of cells are under consideration, examina-
tion of the master eqn (1) is prudent when dealing with
situations in which small numbers of cells are present,
such as may be the case 

 

in vitro

 

 and during the early stages

of tumour formation. In these cases, stochastic fluctua-
tions may be extremely important and cannot be
neglected. As a motivating example, Sachs 

 

et

 

 

 

al

 

. (31)
considered stochastic fluctuations in the number of
clonogenic tumour cells near the end of a course of radio-
therapy (at which time, it is expected that the number of
such cells has been decimated to a small value). They
determined that the timing of dose delivery is important
in dictating tumour control probability, a result that would
have escaped deterministic analysis.

The difficulties in analytically solving eqn (1) are
circumvented by using the exact stochastic simulation
algorithm described by Gillespie (32). The Gillespie
algorithm is a relatively straightforward Monte Carlo-based
technique that simulates the time evolution of the popu-
lations described by eqn (1) without directly solving the
master equation. A run of the algorithm consists of
calculating the time and nature of the next event, and then
updating the system proportionately. The process is then
repeated many times (i.e. for a large number of realizations)
to obtain the relevant stochastic quantities. The Gillespie
algorithm has been extensively used in the study of chemical
kinetics for decades, and is being used increasingly in
biological frameworks, for example, in studies of gene
expression (33). Examples of probability distributions
obtained via this method are shown in Fig. 1.

An advantage of the stochastic approach is that it
allows for the possibility of a small population of cells
becoming extinct after some period of time. One quantity
of particular interest is the survival rate 

 

r

 

surv

 

, which we
define as the proportion of realizations of the stochastic
process described by eqn (1) that do not result in extinc-
tion of S-type cells (and, thus, extinction of the tumour,
since we assume that P-type cells alone cannot regenerate
the tumour). Using the Gillespie algorithm to simulate
experiments in which a single stem cell is left to divide
(for various values of the parameters 

 

r

 

1

 

, 

 

r

 

2

 

, and 

 

r

 

3

 

), we
can plot 

 

r

 

surv

 

 against time (Fig. 2).
In order to understand these simulation results, we can

use a simple analytical approach to find an expression for

 

r

 

surv

 

. Consider the birth–death process associated with
S-type cells in isolation. The only type of division that
increases the stem cell population by one is symmetric
self-renewal, which occurs with birth rate 

 

λ

 

 = 

 

ρ

 

S

 

r

 

1

 

. Both
symmetric differentiation and stem cell death decrease the
stem cell population by one and, thus, we have death rate

 

μ

 

 = 

 

ρ

 

S

 

r

 

3

 

 + 

 

Γ

 

S

 

. This birth–death process is governed by the
master equation (34):

(2)
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for nS ≥ 1 [with dp(0, t)/dt = μp(1, t)]. Eqn (2) can be solved
using the method of generating functions, described, for
example, by Bailey (34). We are particularly interested in
the quantity 1 – p(0, t), which is the probability that at least
one S-type cell is surviving at time t (i.e. rsurv). We find that

(3)

The long-term tumour survival rate may be particularly
useful; this is found by taking the limit as t → ∝ of
eqn (3). In the particular case that ΓS is negligibly small,

we see that  (when r1 > r3 and 0 other-
wise) as t → ∝. This is in agreement with our numerical
simulations (Fig. 2). Thus, the model makes the somewhat
encouraging prediction that the occurrence of a single
cancer stem cell will not necessarily result in a tumour,
even if the probability of self-renewal is greater than that
of differentiation. As a numerical example, consider the
case in which oncogenic transformation results in the
presence of a single cancer stem cell with characteristic
division probabilities r1 = 0.4, r2 = 0.3, and r3 = 0.3: this
cell has only a 25% chance of forming a lasting colony
(i.e. a tumour). This is in contrast to the exponential
growth that is predicted by a deterministic model
[d < nS >/dt = (λ – μ) < nS >, see also below] for the same
parameter values, again emphasizing the role of fluctuations
in small populations. It is worthwhile to comment that

Figure 1. Example probability distribu-
tions at time T = ρρρρS t = 10 generated from
the master equation (eqn 1) using the
Gillespie algorithm. (a) r = r1 – r3 = 0.15 and
r2 = 0.55. (b) r = r1 – r3 = 0.20 and r2 = 0.60.
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the resulting < nS > and  from eqn (2) grow expo-
nentially (see Appendix), while the relative standard
deviation (defined as the ratio of the standard deviation
σ to the mean) for the population of BTSCs is inversely
proportional to the square root of the initial number of
BTSCs. Thus, we expect that for larger values of ,
realizations of the stochastic process defined by eqn (2)
are increasingly in agreement with the corresponding
solution to the average equation (35).

As the cellular population grows, it becomes pertinent
to consider the equations for the average numbers < nS >
and < nP > of each population, which we derive from
eqn (1) and will subsequently refer to as the ‘average
equations’ for brevity. Multiplying eqn (1) by nS and sum-
ming over all nS and nP, we can use the definition of the
mean S = < nS > to write

(4)

where we have defined r = r1 – r3. Similarly for P = < nP >,

(5)

In setting up the average equations, it becomes apparent
that the difference of symmetric division rates r = r1 – r3
is the parameter of paramount importance – although we
note that, due to the requirement that r1 + r2 + r3 = 1, this
difference is not independent of the asymmetric division
rate r2 (clearly, the parameter r could be written in terms
of any two of the three division rates).

Another quantity of interest is the fraction of cancer
stem cells. Defining X(t) = S(t)/[S(t) + P(t)], we notice
that while the average numbers of neither stem cells S(t)
nor progenitor cells P(t) reach a steady state, the function
X(t) does. To see this, we first differentiate X(t) with respect
to time, and use eqns (4) and (5) to find that:

(6)

Introducing for brevity the notation b = ρSr – ΓS + ΓP and
using the relation P/(S + P) = 1 – S/(S + P) = 1 – X, we can
write

(7)

Some algebraic manipulation then yields

(8)

where K = b/[ρS(1 – r) + b]. Notice that eqn (8) is a logistic
growth equation for X; setting its time derivative to zero
we find that X has stable steady-state solution K (this
nontrivial steady-state solution is only valid for values of
b > 0). When the death rates ΓS and ΓP are small (or their
difference is small) compared to ρSr, we can make the
approximation K ≈ r. In other words, as t → ∝:

(9)

Thus, while the overall number of tumour cells continues
to grow, our model indicates that the proportion of stem
cells [i.e. the fraction X = S/(S + P)] approaches a con-
stant value that is dependent only on the difference of
the probabilities of the two types of symmetric BTSC
divisions – this trend is independent of the initial numbers
of cells  and . Note that, alternatively, this result can
be derived by directly solving the average equations and
taking the limit of the ratio S/(S + P) as t → ∝. This
observation is consistent with recent findings that the
long-term maintenance of a specific percentage of stem-
like cells within a tumour is dependent upon the rate of
symmetric division (21). Here we have considered the
dynamics of only stem and progenitor cells, as these are
the proliferating cells that are of primary interest (see the
Appendix for the mathematical inclusion of mature cells).

Treatment

A recent study by Piccirillo et al. (20) has suggested the
possible use of BMPs in selectively targeting the BTSC

< >  nS
2

Figure 2. Survival rate rsurv vs. time, for various values of r1, r2 and
r3 with r = r1 – r3 = 0.05 fixed for the purpose of comparison. ΓS = 0,
and the initial number of cells is nS = 1. Dashed lines are obtained from
eqn (3). Note that as T grows large, the curves tend to 1 – (r3/r1), as
expected. Data points are from 100 000 realizations of the Gillespie
algorithm.
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subpopulation, while another by Bao et al. (19) has
examined the phenomenon of resistance to radiotherapy
that is demonstrated preferentially by these cells. Here,
we focus on the application of these treatments. To this
point we have considered conditions of exponential
growth, which are appropriate in vitro or during the early
stages of tumour development. To account for the in vivo
effects of competition for space and nutrient limitations,
we incorporate logistic growth by replacing the formerly
constant overall BTSC division rate ρS by rS(S, P) = ρS(1
− cSS − cPP), where 1/cS and 1/cP are the limiting popu-
lations of stem and progenitor cells, respectively. Stochastic
simulations indicate that the results of the model regarding
tumour composition and survival rate are conserved from
the exponential growth regime to the logistic growth
regime, to a good approximation. The use of a logistic
growth model now allows for discussion of various in vivo
treatment strategies. In the following, we consider the
dynamics of only cancer stem cells and progenitor cells,
as these are the proliferating populations that are the
targets of therapy.

We first consider the application of radiotherapy by
using the exponential decay model described by Kohandel
et al. (36). The model is incorporated by adding treatment
terms to the average eqns (4) and (5) for the numbers of
stem and progenitor cells, respectively, so that they read:

(10)

Here, αS and αP represent the radiosensitivities of the
stem and progenitor cells (respectively), in units of 1/Gy.
The ith acute dosage (in Gy per day) is denoted di, which
is applied at time ti. The radiation clearance time (order of
doubling time) of CD133+ cells is τS (day), and τP (day)
is that of the CD133− cells. Finally, the function f (x) =
exp(–x) when x ≥ 0 and equal to zero otherwise.

It has recently been observed in the laboratory that
CD133+ GBM cells exhibit greater radioresistance than
do cells lacking CD133. In particular, following treatment
of cultures of cells isolated from primary human glioblas-
tomas or from human glioblastoma xenografts grown in
murine hosts with 2–5 Gy ionizing radiation, the fraction
of CD133+ cells was found to have increased 4- to 5-fold
(19). Similar results were obtained in vivo, with murine
subjects bearing xenograft tumours. These results indicate
that the radiosensitivity of BTSCs may be significantly
smaller than that of GBM progenitor cells, and, thus, in
our model we should choose αS < αP (eqn 10). Based on
data of Bao et al. (19), αS was estimated to be 0.2 Gy−1,

a value consistent with a previous estimate of stem cell
radiosensitivity given by Sachs and Brenner (37). We
estimate αP to be 3-fold greater (0.6 Gy−1). Although not
considered here, Bao et al. (19) suggest that administra-
tion of an inhibitor of the Chk1 and Chk2 checkpoint
kinases (specifically, debromohymenialdisine) concurrent
with ionizing radiation renders CD133+ cells more vulnerable,
thus acting to increase the value of αS.

While recognizing the radioresistance of CD133+

brain tumour cells is an important if somewhat grim
realization, encouraging news comes from recent experi-
ments by Piccirillo and colleagues supporting the notion
that BMPs may induce CD133+ GBM cells to differentiate
into cells with decreased tumorigenic potential (20). BMPs
are a subgroup of the transforming growth factor beta
family (38). While BMPs play various roles throughout
the body, in neural development they typically induce
differentiation into astroglial cells (20). In vitro, treatment
of glioblastoma-derived cells with BMPs resulted in
significantly reduced (in the range of 50%) CD133+ popu-
lations. In vivo, immunodeficient mice that received
gradual administration of BMP4 via beads implanted into
their brains either concurrent with or following xenograft
of glioma cells lived longer than control mice. The precise
mechanisms through which BMPs reduce the tumorigenicity
of CD133+ GBM cells remain unclear (20); mathemati-
cally, in our model we interpret the effects of BMP4 as
decreasing the net symmetric division rate r while leaving
r2 fixed. Based on the work of Piccirillo et al. (20), we
estimate that, starting from a pretreatment value of r = 0.1,
the effect of treatment with BMP4 is to reduce r to –0.1.
Note that we have previously defined r = r1 – r3, so that
the change of r to a negative value represents a simultaneous
increase in the proportion of symmetric differentiation
divisions and decrease in the proportion of symmetric
self-renewing divisions.

In the laboratory, the minimum number of CD133+

GBM cells required for tumour formation upon injection
into immunocompromised mice has been reported as
approximately 100, while xenograft of up to 106 CD133–

cells lacked the capacity to be tumorigenic (11,19). For
our simulations, we take  = 5000 and  = 105. This is
roughly equivalent to implanting a tumour of 2–3 mm in
diameter, which is initially about 5% stem cells by compo-
sition. The doubling time of the CD133+ subpopulation is
estimated to be about 2 days (36), resulting in ρS r ≈ 0.35
day–1. We take cS and cP to be 10–7 and 10–8, respectively.

Solving the average equations numerically, we can
consider the effects of various treatment strategies on GBM
cell populations (Fig. 3). A feature of our results is the
observed enrichment of the CD133+ population following
treatment with ionizing radiation, consistent with the
experimental results of Bao et al. (19). In our model, the
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greater radiosensitivity of CD133− cells dictates that the
fraction of CD133+ cells increases (Fig. 3). Furthermore,
the logistic growth condition leads to an increase in the
growth rate as CD133− cells are destroyed; this allows

CD133+ cells to repopulate using resources made newly
available. Consequently, we observe a slight increase in the
number of CD133+ cells relative to the control case once
radiotherapy has ended and the number of cells has
plateaued (Fig. 4).

Our numerical results (Fig. 4) indicate that a BMP-type
therapy is effective in decreasing CD133+ cell numbers at

Figure 3. Total number of CD133+ and CD133−−−− cells (a) and fraction
of CD133+ cells (b) following various combinations of treatments.
The legend is as follows (reproduced in colour online): black, solid (left
most in (a), 3rd from bottom at t = 22 in (b)) (no radiation or bone
morphogenetic proteins (BMP)); blue, solid (2nd from left in (a), 4th
from bottom at t = 22 in (b)) (3 Gy ionizing radiation administered at
day 10); blue, dashed (3rd from left in (a), 7th from bottom at t = 22 in
(b)) (10 Gy ionizing radiation administered in 2-Gy doses on days 10,
12, 14, 16, and 18); blue, dotted (5th from left in (a), top-most at t = 22
in (b)) (18 Gy ionizing radiation administered in 2-Gy doses on each of
days 10–18); green, solid (4th from left in (a), 2nd from bottom at t = 22
in (b)) (10 days BMP4 administered from days 0 to 10); green, dashed
(6th from left in (a), bottom-most at t = 22 in (b)) (BMP4 administered
from days 8 to 20); red, solid (7th from left in (a), 6th from bottom at
t = 22 in (b)) (BMP4 administered from days 0 to 10 followed by 10-Gy
radiation administered in 2-Gy doses on days 10, 12, 14, 16, and 18);
red, dashed (right-most in (a), 5th from bottom at t = 22 in (a)) (BMP4
administered from days 8 to 20 with 10-Gy radiation administered in
2-Gy doses on days10, 12, 14, 16, and 18).

Figure 4. Number of CD133+ cells (a) and number of CD133−−−− cells
(b) following various combinations of treatments. Black, solid (left-
most) (no radiation or bone morphogenetic proteins (BMP)); blue, solid
(2nd from left) (3-Gy ionizing radiation administered at day 10); blue,
dashed (3rd from left) (10-Gy ionizing radiation administered in 2-Gy
doses on days 10, 12, 14, 16, and 18); blue, dotted (5th from left) (18
Gy ionizing radiation administered in 2-Gy doses on each of days 10–
18); green, solid (4th from left) (10 days BMP4 administered from days
0 to 10); green, dashed (6th from left) (BMP4 administered from days 8
to 20); red, solid (7th from left) (BMP4 administered from days 0 to 10
followed by 10-Gy radiation administered in 2-Gy doses on days 10, 12,
14, 16, 18); red, dashed (right-most) (BMP4 administered from days 8
to 20 with 10-Gy radiation administered in 2-Gy doses on days 10, 12,
14, 16, and 18).
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the expense of a slight increase in the number of CD133−

cells and, hence, in the total number of cells (Fig. 3). This
net increase is a consequence of our assumption that each
CD133+ cell produces two CD133− cells. If, rather, a
CD133+ cell transitions directly into a CD133− cell (i.e.
an event of the form S → P), then such an increase in
overall tumour bulk is not to be expected. In either case,
our results suggest that radiotherapy may be more effective
when combined with BMP (or another type of differentiation-
inducing) therapy, as is evidenced by the length of time
for which cell number is suppressed below saturation in
the case of radio- and BMP combination therapy relative
to other strategies. It should be stressed, however, that at
the present time, clinical therapy with BMPs is unfeasible
due to the many questions that remain regarding the
actions and consequences of these proteins – our theoretical
results merely provide additional motivation to investigate
such differentiation-inducing factors. A further prediction
of the model is that, following the discontinuation of a
treatment regime composed of any combination of
radiotherapy and BMP-type therapy, the GBM cell popu-
lation will recover to its original constitution (unless the
CD133+ population has been rendered extinct). That is,
the period of change in the percentage of CD133+ GBM
cells that begins with the onset of treatment is only tran-
sient, and the tumour will eventually recover its original
phenotype (Fig. 3).

Discussion

Mathematical modelling of the cancer stem cell hypothesis
is likely to prove useful in two somewhat distinct ways.
First, in attempting to establish a mathematical framework
that encapsulates such a complex biological process that
is only beginning to be understood, important insights
and questions may surface that will help to direct future
research. Following these initial stages, mathematical
modelling will become increasingly useful in predicting
strategies for battling the tumour and its resilient cancer
stem cells. It seems clear that a deeper understanding,
combined with quantitative modelling of cancer stem cells,
is central, not only for the design of effective experimental
studies to identify particular tumorigenic pathways, but
also for the development of effective therapies that will
target cancer stem cells.

Related to experimental design, our work has indicated
the potential significance of the difference r = r1 – r3 in
determining a steady-state tumour composition. For
example, we predict that a tumour that is 10% BTSCs
(relative to total BTSCs and progenitor cells) by compo-
sition has r = 0.1. Furthermore, it follows that symmetric,
rather than asymmetric, cell divisions are the important
divisions in driving tumour growth and maintenance at

the macroscopic level. Indeed, by a simple rescaling, we
have seen that the rate of asymmetric divisions r2 can be
removed from the average equations altogether. On the
microscopic scale of small numbers of cells, however,
asymmetric divisions may play an important role. Additional
experiments are needed to validate these hypotheses, and
to further illuminate the mechanisms of cancer stem cell
division. In particular, there is a lack of quantitative estimates
for the parameters r1, r2, and r3. It would be worthwhile
for experimentalists to develop assays that measure the
tendencies for glioblastoma stem cells to undergo these
certain types of divisions. A comparison of experimental
data with numerically generated probability distributions
may permit the interpolation of the frequencies with
which BTSCs undergo certain divisions.

In addition to the difference of the rates of symmetric
division, we have also demonstrated that the ratio r3/r1
may be of importance in determining the survival rate, or
frequency of small numbers of potentially tumorigenic
cells developing into tumours. It is an experimentally
observed phenomenon that typically only a small fraction
of singly cultured CD133+ cells develop into tumour
spheres. For example, Beier et al. (39) report that only
2–5% of CD133+ cells isolated from primary glioblastomas
formed tumour spheres when replated at one cell per well.
Parameter values (in particular, the division probabilities
r1, r2, and r3) should thus be chosen to satisfy both a low
survival rate and a long-term tumour composition con-
sistent with those observed clinically and experimentally
[for brain tumours, the fraction of CD133+ cells has been
recognized as in the range of about 5 to 30% (11)]. However,
stochastic simulations and the aforementioned analytical
survival rate together indicate that the division probabilities
r1 and r3 cannot be chosen to simultaneously satisfy both
the experimentally observed tumour sphere formation
likelihood and the necessary condition of consistency
with experimentally, and clinically, observed tumour
composition. More specifically, the model predicts that a
significantly higher percentage of singly cultured CD133+

cells form tumour spheres than is observed.
The lack of concordance between the model prediction

and this result is a reflection of the current state-of-
knowledge of the brain cancer stem cell hierarchy and the
markers that are associated with it. It is an assumption of
our model that each CD133+ cell has some tumorigenic
capacity. CD133, also known as AC133 or human Prominin-1,
is an 865-amino acid-long glycosylated protein embedded
in the plasma membrane, consisting of five transmembrane
domains including two prominent extracellular loops
(40,41). Although its biological function has yet to be
established (40,41), it was first identified as a marker of
haematopoietic stem cells (42) and was subsequently
recognized as a marker of human central nervous system
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stem cells (13). Since then, it has been implicated as a
marker for various putative cancer stem cells, including
those of the brain and prostate [see Singh et al. (11) and
Collins et al. (43), respectively]. While sufficient data
exist to conclude that CD133 is certainly correlated with
cancer cell ‘stemness’, this marker alone does not seem to
positively identify human BTSCs while excluding non-
tumour-initiating progenitor cells, as is evidenced by the
relatively low observed frequencies of individual cells
from CD133+ tumour-derived subpopulations forming
tumour spheres (10,11,39). Additional confusion regarding
the significance of CD133 comes from the recent report
that a certain subset of glioblastomas may be driven by a
CD133− cell subpopulation (39). Together, these con-
siderations emphasize the importance of finding novel
markers and methods of characterizing BTSCs as distinct
from their non-tumorigenic progeny. When such advances
are made, these can be accommodated by our mathematical
model. For example, experimental distinction between
BTSCs and non-tumour-initiating cells within the
CD133+ cell pool would allow for the mathematical
treatment of, and assignment of parameter values to, two
separate CD133+ cell populations (one capable of self-
renewal and the other not). A similar adaptation could be
made to the CD133− population, in light of the results of
Beier et al. mentioned above (39).

Our numerical results regarding treatment agree
qualitatively with the observations of Bao et al. (19) and
Piccirillo et al. (20). They also predict that the application
of BMPs, together with radiotherapy, may constitute a
highly effective treatment strategy. This should motivate
the design of experiments that test such combination
therapies. There is also a need for additional research,
both experimental and theoretical, focused on the separate
actions of BMPs and radiotherapy. How exactly do BMPs
act to make BTSCs less tumorigenic, and why is it that
some BTSCs may resist these effects (14)? Regarding
radioresistance of CD133+ cells, it should prove worthwhile
to perform additional quantitative in vivo studies. As
pointed out by Hambardzumyan et al. (44), much of the
current data are derived from GBM cell cultures, which
lack the oxygenic and other stimulatory conditions that
define the in vivo tumour microenvironment.

While much remains to be unravelled, it is certainly
clear, as further evidenced by our numerical simulations
and results, that the entire BTSC subpopulation must
be eliminated before we can speak of a curative therapy.
This indicates the need for new and improved treatment
strategies. One promising direction may involve anti-
angiogenic drugs that disrupt the development of tumour
vasculature (45). Folkins et al. (46) have recently demon-
strated that anti-angiogenic therapy may disturb a possible
BTSC niche, analogous to the niche of normal neural

stem cells, which in turn may cause BTSCs to differentiate
as they lose the niche signals that confer ‘stemness’ upon
them. By doing so, anti-angiogenic therapy may act as a
primer for conventional treatments in a novel combination
treatment strategy aimed at rendering the BTSC sub-
population extinct (46). The cancer stem cell hypothesis
represents a landmark step in that it recognizes that not all
tumour cells are equal. In addition to the importance of
this type of populational heterogeneity, it is becoming
increasingly clear that the micro-environmental heterogeneity
of a tumour is an undeniable force in determining cellular
behaviour. Considering the effects of irregular vasculature
and a possible BTSC niche will be an interesting challenge
for future modelling.

While there are current limitations on mathematical
modelling of BTSCs, in terms of the previously discussed
need for more precise biomarkers and a better understanding
of the processes of BTSC proliferation and self-renewal,
our model is adaptable to new features as discoveries are
made. As biological knowledge of the BTSC hierarchy
grows, so too will the related mathematical modelling.
In addition to the radioresistance documented by Bao et al.
(19), chemoresistance of CD133+ glioma cells is a recently
observed phenomenon [see, for example, Liu et al. (47)].
Ganguly and Puri (28) have included chemotherapy in
their mathematical model of cancer stem cell dynamics (27);
in the future, it may also be interesting to use a stochastic
approach to examine the effects of chemotherapy. The
synergistic interplay between mathematical modelling and
experiment will lead to computational models that can
then play a role in designing treatment strategies that are
effective in doing what the cancer stem cell hypothesis
implies is clearly necessary: eradicating the underlying
cancer stem cells to one day provide a truly curative therapy.
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Appendix

Inclusion of mature cells

In the main text, we concerned ourselves with only the
populations of stem and progenitor cells. However, the
model can easily be generalized to include the population
of mature cells. In particular, we assume that progenitor
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cells can asymmetrically self-renew with some (typically
small) probability 1 – r′ and otherwise perform a symmetric
commitment-type division to mature cells with probability
r′ (and that with rate ρP progenitor cells undergo either of
these two types of divisions). Introducing a death rate for
mature cells ΓM and using the same assumptions as before
for stem and progenitor cells, we have the following master
equation:

(11)

Since we have not altered the dynamics of the cancer stem
cell population, the survival rate is the same as that given
in eqn (3). The associated average equations are

(12)

where GP = ρPr′ + ΓP and, for consistency, we have again
taken r = r1 – r3. By either solving eqn (12) directly and
taking the limit as t → ∝ or by applying an approach
similar to that used in the case of the two-compartment
model (i.e. finding a pair of coupled ordinary differential
equations for X = S/(S + P) and Y = S/(S + P + M) and
solving for steady-state solutions), we find that

(13)

where a′ = ρS (1 – r) (defined previously), b′ = ρSr + ρPr′ –
ΓS + ΓP, c′ = ρP(1 + r′) and d′ = ρSr – ΓS + ΓM. Note that
if we take r′ = 0, then the second line of eqn (12) reduces
to eqn (5).

Relative standard deviation

We have derived the following deterministic equations for
the first and second moments:

(14)

For brevity, we will write λ = ρSr1 and μ = ρSr3 + ΓS so
that the above equations can be written simply as

(15)

These are solved to give

(16)

where n0 = nS (0) is the initial number of BTSCs. From
these two equations we can calculate the standard deviation

(17)

which, for λ > μ (this must be the case for a growing
tumour), obeys

(18)

as t → ∝. Thus, we see that while the standard deviation
of the stochastic realizations about the mean grows
exponentially, the relative standard deviation decreases with
increasing initial number of BTSCs. For μ = 0, eqn (18)
gives  (35).

References

1 DeAngelis LM (2005) Chemotherapy for brain tumors – a new
beginning. N. Engl. J. Med. 352, 1036–1038.

2 Tan BT, Park CY, Ailles LE, Weissman IL (2006) The cancer stem
cell hypothesis: a work in progress. Lab. Invest. 86, 1203–1207.

dp n n n t

dt
r n p n n n t

r n p n n n t

r n p n n n t

n p n n

S P M

S S S P M

S S P M

S S P M

S S

( , , , )
  

   { (   ) (   , , , ) 

 ( ,   , , )

 (   ) (   ,   , , ) 

 ( , 

=

− −
+ −
+ + + −
−

ρ 1

2

3

1 1

1

1 1 2

PP M

S S S P M

S S P M

p P S P M

P S P M

n t
n p n n n t

n p n n n t
r n p n n n t

r n p n n n

, , )}
 {(   ) (   , , , ) 
 ( , , , )}
 {   } ( , ,   , )

 (   ) ( ,   ,   

+ + +
−
+ − ′ −
+ ′ + + −

Γ 1 1

1 1

1 1 2

ρ
, , ) 

 ( , , , )}
 {(   ) ( ,   , , ) 
 ( , , , )}
 {(   ) ( , ,   , ) 
 ( , , , )}.

t
n p n n n t

n p n n n t
n p n n n t

n p n n n t
n p n n n t

P S P M

P P S P M

P S P M

M M S P M

M S P M

−
+ + +
−
+ + +
−

Γ

Γ

1 1

1 1

dS

dt
rS S

dP

dt
r S P

dM

dt
r S M

S S

S P

P M

    

  (   )   

  (   )   ,

= −

= − −

= + ′ −

ρ

ρ

ρ

Γ

Γ

1

1

G

lim
    

  

    

,
t

S

S P M a

b

c

d

→∞ + +
=

+ ′
′

+ ′
′

⎛
⎝⎜

⎞
⎠⎟

1

1 1

d n

dt
r r n

d n

dt
r r n

r r n

S
S S S S

S
S S S S

S S S S

< >
= − + < >

< >
= − + < >

+ + + < >

  
  [   (   )]   ,

  
  [   (   )]    

 (     )   .

ρ ρ

ρ ρ

ρ ρ

1 3

2

1 3
2

1 3

2

Γ

Γ

Γ

d n

dt
n

d n

dt
n n

S
S

S
S S

< >
= − < >

< >
= − < > + + < >

  
  (   )   ,

  
  (   )     (   )   .

λ μ

λ μ λ μ
2

22

< > = −

< > =
+
−

⎛
⎝⎜

⎞
⎠⎟

− − −

+ −

     exp((   ) ),

    
  

  
exp((   ) )(exp((   ) )  ) 

  exp( (   ) ),

n n t

n n t t

n t

S

S

0

2
0

0
2

1

2

λ μ

λ μ
λ μ

λ μ λ μ

λ μ

σ

λ μ
λ μ

λ μ λ μ

         

 
  

  
 exp (   ) exp((   ) )  ,

= < > − < >

=
+
−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

− −

n n

n t t

S S
2 2

0
1

2
1

σ λ μ
λ μ< >

→
+
−  

  
  

  n nS

1

0

σ/     < > →n n
S 1 0



Characterizing brain tumour stem cells 539

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd, Cell Proliferation, 42, 529–540.

3 Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-
Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A
cell initiating human acute myeloid leukaemia after transplantation
into SCID mice. Nature 17, 645–648.

4 Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organ-
ized as a hierarchy that originates from a primitive hematopoietic
cell. Nat. Med. 3, 730–737.

5 Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke
MF (2003) Prospective identification of tumorigenic breast cancer
cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988.

6 Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M,
Peschle C, De Maria R (2007) Identification and expansion of human
colon-cancer-initiating cells. Nature 445, 111–115.

7 O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon
cancer cell capable of initiating tumour growth in immunodeficient
mice. Nature 445, 106–110.

8 Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD,
Steindler DA (2002) Human cortical glial tumors contain neural
stem-like cells expressing astroglial and neuronal markers in vitro.
Glia 39, 193–206.

9 Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M,
Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous
stem cells can arise from pediatric brain tumors. Proc. Natl. Acad.
Sci. USA 100, 15178–15183.

10 Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J,
Dirks PB (2003) Identification of a cancer stem cell in human brain
tumors. Cancer Res. 63, 5821–5828.

11 Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T,
Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of
human brain tumour initiating cells. Nature 432, 396–401.

12 Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S,
Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and
characterization of tumorigenic, stem-like neural precursors from
human glioblastoma. Cancer Res. 64, 7011–7021.

13 Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV,
Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of
human central nervous system stem cells. Proc. Natl. Acad. Sci. USA
97, 14720–14725.

14 Dirks PB (2006) Cancer: stem cells and brain tumours. Nature 444,
687–688.

15 Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-
cell divisions in development and cancer. Nature 441, 1068–
1074.

16 Dirks PB (2007) Brain tumour stem cells: the undercurrents of
human brain cancer and their relationship to neural stem cells.
Philos. Trans. Roy Soc. Lond. B Biol. Sci. 363, 139–152.

17 Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve.
Cell 124, 1111–1115.

18 Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells,
cancer, and cancer stem cells. Nature 414, 105–111.

19 Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB,
Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells pro-
mote radioresistance by preferential activation of the DNA damage
response. Nature 444, 756–760.

20 Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi
G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphoge-
netic proteins inhibit the tumorigenic potential of human brain
tumour-initiating cells. Nature 444, 761–765.

21 Boman BM, Wicha MS, Fields JZ, Runquist OA (2007) Symmetric
division of cancer stem cells–a key mechanism in tumor growth that
should be targeted in future therapeutic approaches. Clin. Pharma-
col. Ther. 81, 893–898.

22 Wichmann HE, Loeffler M (1985) Mathematical Modeling of Cell

Proliferation: Stem Cell Regulation in Hemopoiesis, Vol. I. Boca
Raton, FL: CRC Press.

23 Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL,
Nowak MA (2005) Dynamics of chronic myeloid leukaemia. Nature
435, 1267–1270.

24 Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ
(2007) Mathematical modeling of cell population dynamics in the
colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. USA
104, 4008–4013.

25 Swanson KR, Rostomily RC, Alvord EC Jr (2008) A mathematical
modelling tool for predicting survival of individual patients following
resection of glioblastoma: a proof of principle. Br. J. Cancer 98, 113–
119.

26 Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A
mathematical model of glioblastoma tumor spheroid invasion in a
three-dimensional in vitro experiment. Biophys. J. 92, 356–365.

27 Ganguly R, Puri IK (2006) Mathematical model for the cancer stem
cell hypothesis. Cell Prolif. 39, 3–14.

28 Ganguly R, Puri IK (2007) Mathematical model for chemotherapeu-
tic drug efficacy in arresting tumour growth based on the cancer stem
cell hypothesis. Cell Prolif. 40, 338–354.

29 Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH
(2007) A single type of progenitor cell maintains normal epidermis.
Nature 446, 185–189.

30 van Kampen NG (2007) Stochastic Processes in Physics and
Chemistry. New York: Elsevier.

31 Sachs RK, Heidenreich WF, Brenner DJ (1996) Dose timing in
tumor radiotherapy: considerations of cell number stochasticity.
Math. Biosci. 138, 131–146.

32 Gillespie DT (1977) Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 81, 2340–2361.

33 Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden
A (2002) Regulation of noise in the expression of a single gene. Nat.
Gen. 31, 69–73.

34 Bailey NTJ (1964) The Elements of Stochastic Processes. New York:
John Wiley & Sons.

35 Kleczkowski A (2005) Population and replicate variability in an
exponential growth model. Acta Phys. Pol. B 36, 1623–1634.

36 Kohandel M, Kardar M, Milosevic M, Sivaloganathan S (2007)
Dynamics of tumor growth and combination of anti-angiogenic and
cytotoxic therapies. Phys. Med. Biol. 52, 3665–3677.

37 Sachs RK, Brenner DJ (2005) Solid tumor risks after high doses of
ionizing radiation. Proc. Natl. Acad. Sci. USA 102, 13040–13045.

38 Chen D, Zhao M, Mundy GR (2006) Bone morphogenetic proteins.
Growth Factors 22, 233–241.

39 Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner
PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133+

and CD133– glioblastoma-derived cancer stem cells show differential
growth characteristics and molecular profiles. Cancer Res. 67, 4010–
4015.

40 Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/
Prominin-1. Int. J. Biochem. Cell Biol. 37, 715–719.

41 Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L,
Dong L, Andera L, Ralph SJ (2007) Tumour-initiating cells vs. can-
cer ‘stem’ cells and CD133: what’s in the name? Biochem. Biophys.
Res. Comm. 355, 855–859.

42 Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT,
Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane
hematopoietic stem cell antigen: isolation, characterization, and
molecular cloning. Blood 90, 5013–5021.

43 Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005)
Prospective identification of tumorigenic prostate cancer stem cells.
Cancer Res. 65, 10946–10951.



540 C. Turner et al.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd, Cell Proliferation, 42, 529–540.

44 Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation
resistance and stem-like cells in brain tumors. Cancer Cell 10, 454–
456.

45 Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batch-
elor TT (2007) Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8,
610–622.

46 Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007)

Anticancer therapies combining antiangiogenic and tumor cell cyto-
toxic effects reduce the tumor stem-like cell fraction in glioma
xenograft tumors. Cancer Res. 67, 3560–3564.

47 Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L,
Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and
chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol.
Cancer 5, 67.


