
JSS Journal of Statistical Software
April 2008, Volume 25, Issue 12. http://www.jstatsoft.org/

GillespieSSA: Implementing the Stochastic

Simulation Algorithm in R

Mario Pineda-Krch
University of California, Davis

Abstract

The deterministic dynamics of populations in continuous time are traditionally de-
scribed using coupled, first-order ordinary differential equations. While this approach
is accurate for large systems, it is often inadequate for small systems where key species
may be present in small numbers or where key reactions occur at a low rate. The Gille-
spie stochastic simulation algorithm (SSA) is a procedure for generating time-evolution
trajectories of finite populations in continuous time and has become the standard al-
gorithm for these types of stochastic models. This article presents a simple-to-use and
flexible framework for implementing the SSA using the high-level statistical computing
language R and the package GillespieSSA. Using three ecological models as examples
(logistic growth, Rosenzweig-MacArthur predator-prey model, and Kermack-McKendrick
SIRS metapopulation model), this paper shows how a deterministic model can be formu-
lated as a finite-population stochastic model within the framework of SSA theory and how
it can be implemented in R. Simulations of the stochastic models are performed using four
different SSA Monte Carlo methods: one exact method (Gillespie’s direct method); and
three approximate methods (explicit, binomial, and optimized tau-leap methods). Com-
parison of simulation results confirms that while the time-evolution trajectories obtained
from the different SSA methods are indistinguishable, the approximate methods are up
to four orders of magnitude faster than the exact methods.

Keywords: Gillespie’s exact method, Kermack-McKendrick SIRS model, logistic growth, meta-
population model, Rosenzweig-MacArthur predator-prey model, tau-leaping.

1. Introduction

It is well known that stochasticity in finite populations can generate dynamics profoundly
different from the predictions of the corresponding deterministic model. For example, demo-
graphic stochasticity can give rise to regular and persistent population cycles in models that

http://www.jstatsoft.org/

2 GillespieSSA: Stochastic Simulation Algorithm in R

are deterministically stable (e.g., Nisbet and Gurney 1976; Dushoff et al. 2004; McKane and
Newman 2005; Pineda-Krch et al. 2007) and can give rise to molecular noise and noisy gene
expression in genetic and chemical systems where key molecules are present in small numbers
or where key reactions occur at a low rate (e.g., Arkin et al. 1998; Fedoroff and Fontana
2002; McAdams and Arkin 2005). Because analytical solutions to stochastic time-evolution
equations for all but the simplest systems are intractable, while numerical solutions are often
prohibitively difficult, stochastic simulations have become an invaluable tool for studying the
dynamics of finite biological, chemical, and physical systems.

In the 1970s, Daniel T. Gillespie (1977, 1976) developed an exact stochastic simulation ap-
proach for chemical kinetics, the Gillespie stochastic simulation algorithm (SSA). The SSA is
a procedure for generating time-evolution trajectories of finite populations in continuous time
and has since its introduction become the standard algorithm for these types of models. The
development of the SSA was also the first effort to accelerate stochastic simulations beyond
what is possible using the basic algorithm by Gillespie. Although the SSA and its various
exact and accelerated Monte Carlo implementations have largely been developed for models
of chemical kinetics and molecular dynamics, the procedures are applicable to any continuous
time system that can be described using coupled first-order ordinary differential equations.
The examples used in this paper are selected to illustrate how to implement the SSA for
different types of ecological models.

This article presents a simple-to-use and flexible framework for implementing the SSA using
the high-level statistical computing language R (R Development Core Team 2007a). Using
three ecological models as examples, I show how the deterministic model can be formulated
as a finite-population stochastic model within the framework of the SSA theory and how
it can be implemented in R using the GillespieSSA package which provides a simple-to-use
and intuitive interface to several SSA Monte Carlo procedures. Section 2 provides a brief
background introduction to the theory underlying the SSA and several of its Monte Carlo
implementations. Section 3 describes the basic strategy of implementing the SSA using the
GillespieSSA package. Section 4 demonstrates the implementation of GillespieSSA using three
biological example models. Section 5 provides a discussion of the computational accuracy and
performance of the different Monte Carlo methods in light of the examples. Finally, Section 6
provides a brief summary of future developments of the package.

2. The Gillespie stochastic simulation algorithm

The Gillespie stochastic simulation algorithm (SSA) is a procedure for generating statistically
correct trajectories of finite well-mixed populations in continuous time. The trajectory that
is produced is a stochastic version of the trajectory that would be obtained by solving the
corresponding stochastic differential equations. While the original SSA (Gillespie 1976, 1977)
is numerically exact, it is generally too slow for most practical applications. Over the years,
numerous approximate SSA methods have been developed to improve the computational effi-
ciency of the procedure. The SSA methods described in this paper are the ones implemented
in the R package GillespieSSA (i.e., Gillespie’s exact method and three accelerated approx-
imate methods). Parameters and variables that are formal arguments in the package are
indicated by typewriter font. Unless otherwise indicated they are followed by the default
value (e.g., epsilon = 0.03).

Journal of Statistical Software 3

The SSA assumes a population consisting of a finite number of individuals distributed over
a finite set of discrete states. Changes in the number of individuals in each state occur due
to reactions between interacting states. Given an initial time t0 and initial population state
X(t0), the SSA generates the time evolution of the state vector X(t) ≡ (X1(t), . . . , XN (t))
where Xi(t), i = 1, . . . , N , is the population size of state i at time t and N is the number
of states. The states interact through M reactions Rj where j = 1, . . . ,M denotes the jth
reaction. A reaction is defined as any process that instantaneously changes the population
size of at least one state. Each reaction Rj is characterized by two quantities. The first is its
state-change vector νj = (ν1j , . . . , νNj), where νij is the population change in state i caused
by one Rj reaction. In other words, if the system is in state x, assuming x = X(t), and one
Rj reaction occurs, the system instantaneously jumps to state x+νj . The second component
of Rj is its propensity function aj(x) which is the probability of one Rj reaction occurring in
the infinitesimal time interval [t, t+ dt).

To illustrate the basic SSA theory, consider the simple radioactive decay model (also known
as the irreversible isomerization reaction set, see Gillespie 1977)

dX

dt
= −cX

where X is the population density at time t and c is the decay parameter. This system consists
of a single state X1 (N = 1) and a single reaction, X → ∅ (M = 1). Assuming X = 1000 and
c = 0.5 the SSA can now be applied by setting the initial population state X1 = 1000, the
state-change vector ν = −1, and the propensity function a1 = c. This model is available in
the package as a demonstration model and can be invoked using demo("radioactiveDecay).
Figure 1 shows the output from one realization.

2.1. Exact SSA

There are several mathematically equivalent Monte Carlo procedures for constructing exact
numerical realizations of the SSA. Perhaps the simplest procedure is the original method by
Gillespie, the so-called direct method (Gillespie 1977, 1976). The direct method proceeds by
drawing two random numbers r1 and r2 from the uniform distribution in the unit interval.
The time step to the next reaction is then determined as τ = 1

a0(x) ln(1/r1) where a0(x) =∑
aj(x) and the index of the next reaction to execute Rj is the smallest integer j satisfying

j =
∑j

i=1 ai(x) > r2a0(x). The reaction is then executed by replacing t ← t + τ and
x← x + νj .

When a0(x) becomes large, due to large population sizes or high reaction rates, the time
increment between reactions decreases, slowing down the simulation. Although computation-
ally more efficient exact methods have been developed (Gibson and Bruck 2000; Cao et al.
2004b), any procedure that simulates one reaction at a time will inevitably be too slow for
most practical applications.

2.2. Approximate SSAs

Several approximate Monte Carlo procedures have been developed which provide better com-
putational performance than the exact methods. These accelerated procedures sacrifice the
exactness of the exact methods for potentially large improvements in computational efficiency.

4 GillespieSSA: Stochastic Simulation Algorithm in R

●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●● ●● ●●●● ●●●● ●● ● ●●●●●●●● ● ● ●●●● ● ●● ●● ●● ●●●● ● ● ●● ● ● ● ●● ●● ● ●● ● ● ● ●● ● ● ● ● ● ● ●●

0 2 4 6 8 10 12 14

0
20

0
40

0
60

0
80

0
10

00

Time

F
re

qu
en

cy

Radioactive decay model

D, 13.57 sec, 1000 steps (1 steps/point)

Figure 1: Example of a single realizations of the radioactive decay model using
demo("radioactiveDecay"). Each data point represent a single time step.

Instead of simulating a single reaction per time step, reactions are ”bundled” in coarse-grained
time increments. As one time step leaps over many reactions, these methods are known as
”leap” or ”accelerated” methods. Under the right conditions, speed-ups of several orders of
magnitude can be achieved.

An important assumption in all accelerated SSA procedures is that the Leap Condition is
satisfied. The Leap Condition requires that the time leap be small enough that the change in
the propensity functions are negligible (Gillespie 2007). In other word, aj(x) ≈ constant in
[t, t+ τ] for all j. Three approximate SSA methods are presented in this paper: the explicit
tau-leap method (ETL); binomial tau-leap method (BTL); and optimized tau-leap method
(OTL).

2.3. Explicit tau-leap (ETL)

In the explicit tau-leap (ETL) method (Gillespie 2001), the number of firings for each reaction
Rj during the time step τ is sampled independently from a Poisson distribution. In the original
ETL formulation, the procedure for selecting the step size is computationally inefficient (both
in terms of speed and accuracy) (Gillespie 2001). In order to keep the algorithm as simple
and as fast as possible the ETL step-size selection procedure is simplified in the GillespieSSA
package by assuming a constant user-defined step size (tau = 0.3).

Journal of Statistical Software 5

The ETL method proceeds by generating, for each reaction j = 1, . . . ,M , the number of
firings kj of reaction Rj in the time step τ as a sample of a Poisson random variable with
mean (and variance) aj(x)τ . Assuming x = X(t), the leap is executed by replacing t← t+ τ

and x← x +
∑M

j=1 kjνj .

While this version of the ETL method has the advantage of computational simplicity, it
does require the user to supply a predefined step size. A heuristic procedure for selecting
an appropriate step size is to evaluate the distribution of step sizes obtained from short
exploratory simulations using the direct method (this assumes that every time step is recorded,
i.e., censusInterval = 0). As a rule of thumb, the step size should be at least a few multiples
of the expected time to the next reaction, 1/a0(x) for the ETL method to be worthwhile
implementing (Gillespie 2001). Although the ETL procedure can significantly speed up the
simulation, it is not as foolproof as the direct method. Due to the unbounded nature of
Poisson random variables and the lack of coordination between reactions during a time step,
the population sizes of individual states can become negative.

2.4. Binomial tau-leap (BTL)

To address the problem of negative population sizes arising in the ETL method, Tian and
Burrage (2004) and Chatterjee et al. (2005) independently developed the binomial tau-leap
(BTL) method. The BTL method described here is a slightly modified version of the procedure
proposed by Chatterjee et al. (2005).

In the ETL method negative population sizes can arise in two ways. Either a reaction can fire
more times than the number of available reactants (i.e., individuals) in one of the states, or
several reactions firing simultaneously during a time step, can drive the number of individuals
in one or several states below zero (Gillespie 2007). By coordinating the number of firings
among different reactions during a time step the maximum number of firings per reaction Rj

can be bounded by the number of individuals in the limiting state (i.e., the state that would
be completely depleted if its consuming reaction were to go to completion). To coordinate
the reactions, the maximum number of firings for a given reaction k∗j is updated between each
subsequent firing during a time step.

The time increment τ is determined by scaling the expected time to the next reaction 1/a0(x)
by a coarse graining factor, f (assuming f > 1) (f = 10), τ = f/a0(x). The number of
firings of reaction Rj during time step τ is then sampled from the binomial random variable
kj = B(k∗j , p), where kj is the number of successes in k∗j independent Bernoulli trials, where
each trial has the probability of success (i.e., it fire) of p = aj(x)τ/k∗j . If aj(x)τ > k∗j (i.e.,
p > 1) the resulting probability is coerced to unity resulting in kj = k∗j and the extinction of
the limiting state. This occurs when a too high coarse-graining factor, f , has been used.

One difference here from the original BTL method of Chatterjee et al. (2005) is that if reaction
Rj does not have any limiting populations, the number of firings is sampled from a Poisson
distribution with mean aj(x)τ .

2.5. Optimized tau-leap (OTL)

The optimized tau-leap (OTL) method was introduced by Cao et al. (2006). It is an improved
procedure that efficiently estimates the largest possible step size, while providing more accu-
rate results than previous approximate methods (Gillespie 2007).

6 GillespieSSA: Stochastic Simulation Algorithm in R

The OTL method partitions the reactions into set of critical and noncritial reactions with Jc

and Jnc being the sets of indices in j of all critical and noncritical reactions (j = 1, . . . ,M).
A reaction is defined as critical if it is within nc (nc = 10) number of firings of depleting any
one of its reacting states.

The step size selection procedure in the OTL method is based on bounding the relative change
in the propensity functions of the noncritical reactions by the same amount (in contrast to the
Leap Condition which evaluates the absolute change in each propensity function separately).
The OTL method proceeds by calculating a candidate time step τnc, estimating the time step
to the next noncritical reaction, for which the estimated fractional change aj(x)/aj(X(t+ τ))
of noncritical reactions, j ∈ Jnc, is bounded by a user-specified accuracy-control parameter ε
(0 < ε� 1) (epsilon = 0.03). The largest permissible τnc is selected indirectly by bounding
the estimated fractional change in each state i by an amount εi = εi(ε, xi) where the function
εi is chosen based on the highest order of the reaction in which state i is involved (see Cao
et al. 2006, for further details).

If the candidate time step τnc is less than the D multiple (dtf = 10) of 1/a0(x), the OTL
method is temporarily suspended and the next nD steps (nd = 100) are executed as single
reaction time steps using the direct method. If the tau-leaping proceeds, i.e., τnc ≥ D/a0(x),
a second candidate time step τc, estimating the time to the next critical reaction, is generated
as a sample of the exponential random variable with mean 1/ac(x), where ac =

∑
j∈Jc

aj(x).
The smaller of the two candidate time steps, τnc and τc, is then chosen as the actual time
step τ .

The number of firings of each noncritical reaction kj is sampled as a Poisson random variable
with mean aj(x), where j ∈ Jnc. If τc ≤ τnc a single critical reaction jc fires once during the
current time step. The reaction jc is selected as a sample of the integer random variable with
point probabilities aj(x)/ac(x) where j ∈ Jc. If τnc < τc no critical reactions are allowed to
fire during the current time leap.

3. Implementing the SSA in R

The SSA framework described in this paper is implemented using the R package GillespieSSA
(Gillespie’s Stochastic Simulation Algorithm, Pineda-Krch 2008), which is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
GillespieSSA. The package is designed to be simple and intuitive to use and is aimed at
facilitating rapid prototyping, deployment, and evaluation of continuous time stochastic mod-
els while being extensible and flexible enough to allow the development of larger and more
complex models.

Usually Monte Carlo implementations of the SSA are developed using low-level compiled
language such as C, C++ or Fortran, e.g., StochKit (Cao et al. 2004a). While this has the ad-
vantage of being computationally efficient and enables true code parallelization it also requires
the end user to have a high level of technical skill to successfully utilize these routines. Imple-
menting the SSA in a higher level programming language like R, in particular the functions
that provide the end-user interface, has the advantage of allowing faster model prototyping,
simpler and shorter model code, platform independence, and a more interactive development
cycle (Petzoldt and Rinke 2007). While the simulations will inevitably be slower than in
low-level implementations, under certain circumstances, it may be possible to parallelize the

http://CRAN.R-project.org/package=GillespieSSA
http://CRAN.R-project.org/package=GillespieSSA

Journal of Statistical Software 7

code by distributing independent computations across nodes of a computational cluster, e.g.,
by using the snow (Simple Network of Workstations) package (Rossini et al. 2007). Another
advantage of implementing the package in R is that the it is required to pass validation
checks that require a consistent documentation giving the package a certain “permanence”
and making it citable (R Development Core Team 2007b).

The main interface function in GillespieSSA is ssa() which is the function most users will
use to launch simulations. The ssa() function first checks the consistency of the defined
system. Then the function evaluates the propensity functions, sets appropriate default values
to SSA arguments that have not been defined by the user, and runs a single Monte Carlo
realization using the requested SSA method, ssa.[method name](). When the simulation
terminates ssa(), returns a list object containing the generated time series, a sub-list of the
initial system definitions, and a sub-list of various simulation statistics. For a full description
of all the options see Pineda-Krch (2008).

It is possible to directly invoke the method functions ssa.[method name](). If all of the
functionality of the higher-level interface function ssa() are not required it may be possible
to optimize the performance of the simulation code by directly accessing the necessary method
function. Because the method functions execute one time step at a time, events taking place
between subsequent time steps (e.g., incrementing the time, updating the state vector, re-
evaluating the propensity functions, and recording the current state of the system) have to
be implemented separately by the user. The package manual (Pineda-Krch 2008) provides
examples of how such simulations can be set up.

Usually the first step in implementing a stochastic model within the framework of SSA theory
is to formulate the deterministic model, the set of coupled ordinary differential equations that
define the instantaneous rate of change of the population densities in the different states (see
for example Equations 1, 2 and 4 below). Although it is possible to formulate the stochastic
model without first having a deterministic model, the advantage of starting out with the
deterministic formulation is that one can generate predictions for the qualitative dynamics
of the model. For example, a local stability analysis can determine parameter regions that
would be interesting to explore using the stochastic model.

The next step is to identify the reactions and derive their associated quantities — the propen-
sity functions and the state-change vectors — both of which can be derived from the deter-
ministic model. In the propensity functions, the state variables are no longer densities, but
the actual (finite) numbers of individuals at any given point in time. Once these quantities
have been defined, the stochastic model can be specified within the framework of GillespieSSA
with the desired parameters and initial conditions.

4. Example models

To illustrate how to define, set up, and run different types of models using the GillespieSSA
package, three different biological models are used as examples. Two of the models are clas-
sical ecological models, the logistic-growth model (Kot 2001) and the Rosenzweig-MacArthur
predator-prey model (Pineda-Krch et al. 2007) while the third model is an epidemiological
metapopulation model based on the Kermack-McKendrick SIRS model (Brown and Rothery
1994). The models span a broad range of complexity, ranging from the simple logistic model
to the dynamically complex predator-prey model and the more complex formulation of the

8 GillespieSSA: Stochastic Simulation Algorithm in R

metapopulation SIRS model.

4.1. Logistic growth

The classical logistic-growth model assumes that the growth of a population decreases with
increasing population size and is given by the following equation,

dN

dt
= rN

(
1− N

K

)
(1)

where N is the population density, K is the carrying capacity of the environment, and r is
the intrinsic per capita growth rate of the population. The model consists of two reactions,
birth (R1) and death (R2). Given r = b− d where b and d are the birth and death rates and
assuming x = X(t), the propensity functions for the two reactions are defined from Equation 1
as a1(x) = bN and a2(x) = (d + rN/K)N (Pineda-Krch et al. 2007), and the state-change
vector is given by ν = (+1,−1).

Assuming b = 2, d = 1, K = 1000 and X(0) = (500), the initial state vector, the state-
change matrix, and the vector of propensity functions can now be defined in the GillespieSSA
framework as

R> parms <- c(b = 2, d = 1, K = 1000)
R> x0 <- c(N = 500)
R> nu <- matrix(c(+1, -1), ncol = 2)
R> a <- c("b*N", "(b+(b-d)*N/K)*N")

Note that the elements in the initial state vector x0 are named using the same notation as
the state variable in the propensity vector a (in this case N). Additionally, the state-change
matrix nu is defined as a matrix even for one-dimensional systems, i.e., systems having a
single species or a single reaction, or both. The rows in nu correspond to the initial state
vector x0 and the columns correspond to the elements in the vector of propensity functions a.
The elements of a are the individual propensity functions for the M reactions and are defined
as character elements using the same notation for the state variables as in x0.

Perhaps the simplest way to run this model using the direct method, method = "D", for 10
time units, tf = 10, is by invoking ssa() as follows

R> tf <- 10
R> method <- "D"
R> simName <- "Logistic growth"
R> out <- ssa(x0, a, nu, parms, tf, method,

simName, verbose = TRUE, consoleInterval = 1)

which generates the following output (middle part is omitted),

Running D method with console output every 1 time step
Start wall time: 2007-09-05 15:57:25...
t=0 : 500
(0.37s) t=1.000318 : 764
(1s) t=2.000523 : 870

Journal of Statistical Software 9

...cut...
(8.32s) t=9.001437 : 912
t=10.00018 : 991

tf: 10.00018
TerminationStatus: finalTime
Duration: 9.7 seconds
Method: D
Nr of steps: 36615
Mean step size: 0.0002731169+/-0.0002866836
End wall time: 2007-09-05 15:57:34

By default the ssa() runs in silent mode, without displaying output on the console dur-
ing the run. Setting verbose = TRUE enables console output during the simulation while
consoleInterval = 1 sets the interval (in simulation time) between updates.
The return value from ssa() is a list object, named out in the previous example, containing
the time series of the population (t,X(t)) in the list out$data, various simulation statistics
in out$stats, and the formal arguments to the function ssa() in out$args.
Figure 2A shows a time series for the logistic model using the different SSA methods. The
results show that while there are substantial difference between the many small time steps in
the direct method and the few and large time leaps of the approximate methods, all methods
generate results that agree well with the predicted trajectory of the deterministic model
(solid line in Figure 2A). The distributions of population sizes from 10, 000 realizations of
each method are virtually indistinguishable (Figure 2B) and are all centered on the predicted
equilibrium population size (K = 1000).

4.2. Predator-prey model

The Rosenzweig-MacArthur predator-prey model has density-dependent growth in the prey
(just as in the logistic-growth model of Equation 1) and a nonlinear type-2 functional response
in the predator where the number of prey consumed by the predator per time unit saturates
at high prey densities (Rosenzweig and MacArthur 1963; Kot 2001). The deterministic model
is given by the following pair of coupled differential equations,

dN
dt

= rN
(

1− N
K

)
− αN

1 + wN P

dP
dt

= P
(
c αN
1 + wN − g

) (2)

Here N and P are the densities of prey and predator, respectively, b and d are the intrinsic
per capita birth and death rates of the prey, K is the carrying capacity of the prey, α is
the predation efficiency, c is the conversion efficiency of the predator (given by the average
number of predator offspring produced per consumed prey) and g is the per capita death
rate of the predator. The parameter w measures the degree of predator saturation. When
w > 0, the rate of prey consumption by the predator gradually increases as prey density
increases, exhibiting a diminishing return before eventually levelling off at a/w. The limit
w = 0 corresponds to a linear functional response, allowing the consumption rate to increase
indefinitely in proportion to prey density.

10 GillespieSSA: Stochastic Simulation Algorithm in R

●●

●●

●
●

●

●

●
●
●

●

●●

●
●
●

●

●●

●
●

●
●
●
●

●

●
●
●

●
●

●

●
●

●

●

●

●

●●●●
●

●

●

●
●
●

●

●
●●

●
●

●●

●●

●

●
●
●

●●

●

●●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●
●
●
●

●

●
●

●
●
●

●

●●

●
●●

●

●

●
●
●
●●

●

●

●

●●

●●
●

●

●●●
●
●
●

●●

●

●●

●

●
●

●

●
●
●●●
●
●
●●

●

●●●●●

●
●
●

●●

●
●
●
●

●●

●

●

●

●

●

●
●
●●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●●

●
●

●
●

●

●
●

●
●

●●
●

●●●

●●
●

●
●
●

●

●

●

●●●
●

●

●
●

●
●

●

●
●

●
●

●
●
●

●
●●
●
●
●
●
●
●
●
●
●
●

●

●
●

●

●

●●

●
●●

●
●●●

●

●

●●

●
●●

●●

●

●●
●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●●

●

●●
●

●
●

●
●
●
●

●

●

●
●
●
●●

●●●●

●
●
●

●●
●

●

●
●●

●●
●

●

●
●
●
●

●●

●

●

●●
●

●

●

●

●●

●●
●

●

●

●●
●

●

●
●

●

●

●●

●

●
●
●

●
●

●●

●
●
●

●

●

●

●

●
●
●

●

●
●
●
●

●

●
●
●●
●

●

●

●

●●●
●

●

●●●●
●●

●●

●
●

●
●

●

●

●
●

●
●
●

●
●

●

●
●●

●

●
●
●
●
●●
●
●

●

●

●●
●

●
●
●
●

●●
●

●

●

●●●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●
●

●
●

●●
●

●
●

●

●
●
●

●
●

●

●
●
●

●
●
●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●
●

●

●●

●

●

●●

●

●
●
●●
●
●
●
●

●

●

●
●

●

●

●●
●
●
●
●

●

●
●●

●

●

●
●
●●
●
●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●
●
●
●

●

●
●

●

●
●
●
●●

●

●

●●
●

●

●

●
●

●●●

●
●
●●
●

●
●

●
●●

●●

●●

●●
●

●
●
●
●
●
●
●

●
●●●
●

●
●

●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●
●

●
●
●

●

●
●

●●●●

●●●

●

●

●●

●
●●

●

●●

●

●
●
●

●

●
●●

●
●

●

●●

●
●

●●

●

●

●
●

●

●

●
●

●●
●

●

●●

●●

●

●
●

●

●
●

●●

●

●●

●

●●
●

●

●
●
●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●
●
●
●

●●

●

●
●

●
●●
●
●

●

●

●●

●●●●

●
●●●

●●
●

●

●
●
●●●
●●

●●

●●●
●
●

●
●

●
●

●●

●
●

●
●
●

●

●

●

●●

●
●
●
●

●

●●

●

●

●

●
●

●●

●

●
●

●

●●

●
●
●●

●
●●

●

●

●
●
●
●
●●
●●

●
●
●●●●
●●●

●●

●

●
●

●
●●
●●
●

●
●
●

●●

●

●

●
●
●

●
●
●●

●

●

●
●
●
●●

●

●●

●
●●

●●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●
●

●●
●

●

●

●

●●
●

●●●
●

●

●

●
●
●

●

●●●

●

●

●
●

●
●●
●
●

●●

●

●

●

●
●
●
●
●
●
●

●●
●●
●
●

●

●
●

●

●●
●
●

●

●

●●●
●●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●●●

●

●
●

●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●●
●
●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●
●

●●

●●
●●

●

●●
●●

●

●
●

●●
●

●

●●

●

●
●●

●

●●
●
●

●

●

●

●
●
●

●
●
●

●

●●

●●

●
●

●

●
●●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●●
●●

●
●

●

●

●
●●

●

●

●

●

●
●
●
●●
●●●

●

●●

●
●
●

●
●

●

●

●

●
●
●
●
●
●

●

●

●●

●

●

●
●

●

●
●

●●●

●

●
●●

●

●●
●
●

●
●

●

●

●

●

●
●
●
●●

●

●
●

●●

●●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●
●

●
●
●
●

●
●

●●

●
●●●
●
●

●●

●

●
●

●

●

●
●●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●●●

●

●
●

●

●

●

●
●

●
●

●●●

●
●

●

●●
●●
●
●

●

●

●
●

●●

●
●●
●

●
●

●

●
●

●

●

●

●
●●●

●
●

●

●●●

●

●

●

●

●●
●

●
●
●

●

●
●
●

●

●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●
●

●●

●

●
●
●
●

●

●●●
●●●
●●

●

●●
●

●

●

●●●

●

●

●

●
●●
●

●●
●●
●

●
●

●
●

●●

●
●

●

●●

●
●●

●●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●●

●

●
●●

●
●

●

●
●●

●

●
●

●
●

●

●

●
●
●

●●●
●

●●
●
●

●
●

●●

●

●

●
●

●

●
●
●

●
●
●●
●
●

●●●

●

●
●
●
●

●
●●●
●

●

●●●

●●
●

●

●●
●

●
●
●

●
●

●●

●
●●
●

●

●
●●

●●●
●
●
●
●
●
●●●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●
●
●●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●
●●

●

●
●
●●●
●
●●

●
●

●

●

●

●
●

●●

●
●

●
●●

●●

●●●

●
●

●
●
●

●●
●

●
●

●

●
●

●
●
●●

●
●

●●
●
●

●●

●

●

●

●●

●

●
●
●

●

●

●

●●

●●

●

●●●

●
●
●●

●

●

●●●
●●●●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●
●

●●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●
●
●

●●

●

●

●

●
●

●●

●●
●

●
●

●

●●

●

●
●

●

●
●

●
●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●
●
●

●
●

●
●●

●

●●
●
●

●

●
●●
●●
●

●
●

●

●●
●

●
●
●●

●

●

●
●●
●

●●
●

●

●

●●

●

●
●

●

●●●
●
●

●●

●

●

●

●●
●

●

●

●●

●
●

●●

●
●●

●
●●

●●●

●

●●
●

●

●
●

●●

●
●

●
●

●

●

●
●

●

●●

●

●

●●
●

●

●

●●
●
●
●
●
●

●
●
●

●
●●

●

●●
●
●●
●

●
●

●

●
●

●
●●

●●
●

●

●
●
●

●

●

●
●

●

●
●●●

●

●

●
●

●
●
●

●

●

●

●

●●

●
●
●

●●●

●
●
●●

●
●
●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●●
●

●

●●

●●●●●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●●●●●
●

●

●
●

●

●

●
●

●●

●
●

●●●
●

●
●

●
●

●

●

●
●

●

●

●

●●
●
●

●

●
●

●

●

●●
●
●●●

●●

●
●●

●
●
●
●

●

●
●●

●
●

●

●●

●

●

●●●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●●●

●●●
●
●
●
●

●

●

●

●

●

●●

●

●
●
●
●
●
●

●
●
●

●

●
●
●●●
●●●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●●
●
●●
●
●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●
●

●●

●

●
●

●

●
●●●

●
●

●

●
●
●
●

●●

●

●

●

●

●
●

●
●

●●
●
●

●●
●

●
●

●
●

●●
●

●●

●

●●
●●●

●
●
●●
●

●

●●

●●

●

●
●●

●●

●●●
●
●●

●

●

●
●

●
●
●
●

●
●
●
●

●
●●●

●
●
●

●

●●●

●●

●

●

●
●
●
●
●

●
●
●

●

●
●
●

●●

●
●

●

●
●

●●●

●
●

●

●

●
●
●
●

●
●

●

●●●
●

●
●

●
●

●

●

●●

●

●
●
●

●●●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●
●

●
●

●

●
●
●

●
●
●
●
●

●
●

●
●
●

●

●
●
●
●

●

●
●
●●

●

●
●
●

●
●
●●
●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●
●
●
●
●

●●
●●

●
●

●

●
●

●
●

●

●
●
●

●
●
●

●

●●

●

●

●●
●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●●

●●●

●
●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●●
●
●
●

●

●●

●

●
●

●

●●
●
●
●

●
●

●

●●●
●
●
●●

●

●

●

●●●
●

●

●
●
●
●

●●●

●●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●
●
●
●●●
●●

●
●●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●
●●

●

●
●

●

●●
●
●●
●●●
●

●

●

●

●●

●
●

●

●

●

●
●
●●●

●
●

●
●

●

●

●
●

●
●
●●
●

●
●
●●

●
●
●●

●
●
●

●
●

●

●

●
●
●
●●
●
●
●

●

●

●
●
●●
●

●
●●

●●
●
●

●

●●●

●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●●●
●

●
●
●
●

●

●●
●

●
●
●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●●
●●
●●
●
●

●
●●
●

●

●
●

●

●
●

●●

●

●●
●

●●

●
●
●

●●
●
●
●

●

●
●

●●
●
●●

●
●●

●
●

●
●
●●

●

●●●●●
●●

●

●
●

●●
●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●●
●
●
●

●
●

●

●

●

●

●
●●●

●

●●

●

●
●●

●●●

●
●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●
●
●●
●●●

●
●

●

●

●

●

●

●
●
●

●
●
●

●
●

●
●●
●

●●

●

●
●
●

●

●●

●

●
●
●

●●

●

●

●
●●
●

●
●
●
●

●●●
●●

●●

●
●

●
●
●

●●●

●

●●

●
●

●

●●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●
●
●

●
●

●

●

●
●

●
●

●

●●

●●●

●●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●
●
●
●
●

●

●

●

●

●
●
●

●
●

●
●
●

●
●●
●
●
●

●●
●

●

●

●
●

●
●●

●

●

●

●
●
●
●

●

●
●
●
●
●

●
●

●
●●

●

●●●●
●

●
●
●
●

●

●

●

●

●

●
●●
●

●

●●
●

●●
●

●
●

●

●

●●

●
●●
●

●

●

●

●
●
●
●

●

●
●

●

●

●●
●
●

●
●

●
●
●

●
●●
●
●
●

●
●●●
●

●

●
●
●
●

●

●
●

●
●
●
●
●

●
●●
●
●

●●●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●
●●●
●●

●

●●

●●
●
●

●
●

●
●

●●●

●

●

●
●
●●
●

●

●

●

●

●

●
●●
●●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●●●
●

●●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●
●

●●
●
●

●

●

●

●

●●●
●●

●
●

●●
●

●
●
●●●

●
●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●
●
●

●
●
●●●●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●
●
●
●●
●

●
●
●

●
●
●●

●

●

●
●
●●

●●

●

●

●●

●

●

●

●

●
●●

●●
●

●

●

●
●
●●

●

●●

●
●
●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●

●
●
●

●

●●
●
●

●
●●●
●

●

●

●

●
●●

●

●

●
●

●●
●●

●●
●
●

●
●
●●

●
●

●●

●

●
●
●

●●
●●

●●●
●
●

●

●
●
●●

●

●
●

●

●

●

●●

●●●●●●●

●
●

●

●
●

●
●
●

●

●●

●

●
●●

●

●
●

●

●

●

●
●
●
●

●
●
●

●●
●

●
●

●

●
●

●
●
●

●●●●

●
●
●

●
●

●

●●
●
●

●

●

●
●●

●
●●●

●●●

●

●

●
●

●

●●

●
●

●

●●

●●
●

●

●●

●●

●
●
●

●

●●

●

●

●
●●
●

●
●●

●
●
●
●●

●
●
●

●

●

●

●
●

●●

●

●

●
●
●

●●
●
●●

●●

●
●
●
●

●

●
●●
●

●

●
●

●

●●
●●
●

●
●
●

●
●●
●

●

●
●
●
●

●
●●

●

●

●

●

●
●

●

●

●●●●●
●
●●●

●
●
●
●
●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●
●
●

●
●

●●

●
●

●

●
●●

●

●

●●

●
●
●

●

●●

●

●●●

●

●
●●

●
●●●

●

●
●
●●

●

●●

●●
●
●
●
●
●

●

●
●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●●
●
●

●

●

●●

●

●

●
●

●

●
●
●

●

●
●●

●

●

●
●
●

●
●

●

●
●

●
●

●

●

●●
●
●

●●

●
●

●
●
●

●●
●

●

●

●●

●

●

●
●

●
●
●
●●

●
●●●

●●

●

●●●●●●

●

●

●
●●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●
●

●●●

●
●●
●
●
●●
●

●●
●

●

●

●

●
●●

●●
●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●●

●
●
●

●●

●●

●

●

●
●

●

●

●
●

●●
●●●●

●●

●●

●
●
●

●
●

●●

●

●
●●
●

●

●
●

●

●
●
●●

●●

●

●●

●
●
●●●
●
●
●

●●●
●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●●

●
●

●
●●

●

●
●

●

●

●
●
●

●
●

●
●

●
●

●
●
●

●
●
●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●●

●●
●●

●
●

●

●

●●

●●

●
●●
●
●
●●
●

●

●●

●
●

●

●
●

●

●

●
●
●
●
●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●●

●
●●

●
●

●

●

●●

●●

●

●
●
●

●

●
●
●●
●
●

●

●●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●●
●

●

●
●
●

●

●

●

●

●
●
●
●

●
●

●●
●
●

●●

●
●

●

●
●●

●●

●
●

●
●

●●

●

●●

●

●

●

●
●

●●
●

●●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●
●
●
●
●
●

●

●

●
●●

●●

●
●

●

●
●

●

●

●
●●
●
●
●
●●●
●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●●

●

●●

●
●
●●●
●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●●
●●
●

●

●
●

●

●
●

●
●●

●

●●
●●

●

●●
●

●
●

●
●

●
●

●●
●●

●
●

●
●●
●
●

●
●

●
●

●●

●●
●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●
●

●

●
●
●●
●

●●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●
●

●
●
●
●●
●

●●
●●

●●

●●

●
●

●

●

●
●●

●
●
●
●

●

●
●
●●
●

●

●●

●

●

●
●
●
●●
●●
●
●●

●
●

●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●
●

●
●
●
●
●

●

●●

●

●

●

●

●
●

●●
●
●

●

●

●
●
●
●
●

●

●●

●●●
●

●

●●

●

●
●

●
●●
●

●

●
●

●

●
●

●

●●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●
●

●●

●

●●

●
●

●

●
●●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●

●

●●●

●●●●
●
●

●●
●

●

●

●●
●

●

●

●

●
●●
●

●

●
●●●●
●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●●

●●

●●
●

●

●●
●

●
●

●
●

●●
●●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●
●●

●●

●
●●

●
●

●

●

●

●●●●

●

●
●●

●

●
●●

●●

●

●

●●
●
●●

●●

●
●
●
●
●

●

●

●

●●

●
●

●

●

●
●
●
●●●
●
●
●●
●
●
●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●●●

●
●
●

●
●
●

●●
●
●

●
●
●

●

●●

●
●●
●
●●

●
●
●

●●

●

●

●

●
●
●●

●

●●

●

●

●
●
●
●

●

●

●
●

●

●
●

●
●
●
●
●
●
●

●●●
●

●

●

●

●

●

●
●

●
●
●
●●

●●

●

●
●●●

●

●
●
●

●
●

●

●●

●

●●

●

●
●●●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●
●
●
●

●●
●

●

●

●
●

●

●

●
●
●

●
●

●●
●

●
●

●
●●●

●
●●
●

●●

●

●

●
●
●●●

●
●●

●
●
●
●

●

●●
●
●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●●
●
●

●

●

●●

●

●
●

●

●●●

●

●●
●

●
●
●
●●

●
●

●
●●●
●

●

●●
●
●●
●
●

●●
●
●
●
●
●

●
●

●
●

●
●

●

●
●
●

●
●

●
●

●

●

●
●

●

●

●●●
●●
●
●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●●●

●

●●
●
●

●

●

●●●●

●

●
●

●

●

●

●

●

●
●
●
●●
●

●

●●●
●●

●●

●
●

●
●
●

●
●

●
●

●

●●●●●

●

●●

●●

●
●
●

●●
●●

●●

●●

●

●

●

●●

●

●

●
●

●

●
●
●
●

●

●●

●

●

●
●
●

●●
●
●
●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●●

●
●

●

●●●●

●
●

●

●●●●
●

●

●

●
●

●

●●

●
●
●

●

●

●
●

●
●

●●

●
●

●●

●

●

●

●

●
●

●

●
●
●
●●

●●

●
●

●

●●●

●

●

●

●

●

●
●●

●●●

●
●

●●
●●●
●
●

●●
●

●

●
●●●●●

●
●

●
●
●●

●
●●

●
●

●
●●

●●

●

●

●

●

●
●

●

●

●
●

●●
●
●
●
●

●●

●
●

●
●
●●

●
●

●
●●

●

●

●●●
●
●
●
●●
●
●

●

●

●
●
●●

●

●●

●

●
●

●●

●

●●●

●●

●

●

●

●
●

●

●●●
●

●●
●

●
●

●

●●

●
●

●●

●

●

●

●●

●
●

●

●●
●●

●

●
●

●

●
●

●

●

●●

●●
●

●
●
●
●

●

●
●

●

●

●●
●

●●

●
●

●

●

●●

●●

●

●
●

●

●

●
●●●

●
●
●●●

●
●
●
●

●
●

●

●●●
●

●

●

●
●

●
●
●●
●

●

●

●
●
●

●

●
●

●

●
●●

●
●
●●

●

●

●
●●

●

●

●

●
●
●

●

●
●
●
●

●

●
●
●

●

●

●

●●●

●

●●
●

●

●
●
●
●
●

●

●●
●

●

●●

●

●

●

●●
●
●●

●

●
●●

●

●

●
●●
●
●●●
●

●

●

●

●

●

●
●
●
●

●
●

●

●

●
●●●●
●

●●
●●
●

●

●

●
●
●●●

●

●●●●
●

●
●

●
●●

●
●
●●

●

●●

●
●

●
●

●

●

●
●
●

●
●

●
●

●

●●

●●

●
●

●

●
●
●
●●
●●
●
●
●
●
●●

●

●●

●
●●

●●
●
●

●●
●
●●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●●●●
●
●●

●●
●
●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●●
●
●

●●●
●●

●●

●

●
●

●

●

●●
●

●
●●●●●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●●
●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●●●
●
●

●

●

●

●
●●

●
●●
●
●
●
●

●

●

●

●

●

●

●
●●
●
●

●
●

●

●
●
●
●
●

●

●
●

●●●

●●
●●
●●

●

●

●●

●

●
●

●

●

●
●

●●●●

●
●●●
●●

●
●
●

●
●●

●
●

●
●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●●●

●
●

●
●
●

●

●
●●
●●
●

●
●

●

●

●
●

●

●
●
●

●●

●
●
●●

●

●●
●●
●
●
●

●

●
●
●●
●●

●

●●
●
●

●

●

●
●
●

●

●
●

●

●
●●

●

●
●

●

●

●●
●
●

●

●●

●

●

●●
●
●
●

●
●
●●
●●

●●
●
●●

●
●
●

●

●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●●

●
●●

●

●

●●

●●

●
●

●

●
●
●
●

●
●

●
●●
●

●●●

●

●

●
●

●●

●
●
●
●

●
●

●●
●

●

●
●

●
●●

●
●

●
●
●

●

●

●
●

●●●

●

●

●
●

●●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●●
●
●
●

●

●

●
●

●●
●

●●

●
●

●

●
●
●●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●●
●
●
●
●

●

●

●
●
●

●

●
●

●

●●
●

●●
●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●

●

●●●

●

●

●
●

●●

●●
●

●●

●
●

●
●

●

●
●
●●

●
●

●●

●

●

●

●
●
●
●●

●

●
●
●

●
●

●●

●

●

●

●●

●
●
●
●

●

●

●
●
●
●

●

●

●
●
●
●●

●●●●
●

●
●
●

●●
●
●
●
●

●
●

●
●

●

●

●

●
●
●●

●

●

●

●●
●

●

●

●

●

●●
●
●
●●

●
●

●

●
●
●

●

●

●

●

●

●
●●

●●

●

●

●
●

●
●

●
●
●

●

●
●
●●●
●
●

●
●

●
●

●

●●

●
●

●●

●

●

●
●

●

●

●●●
●●
●●
●

●

●

●
●

●
●

●

●

●●
●

●
●

●
●
●

●
●

●

●

●

●●●

●

●●

●

●

●●

●

●
●

●●

●
●

●

●
●
●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●
●

●

●●
●●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●
●●
●

●●
●

●
●
●

●

●●
●

●
●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●
●●

●

●

●
●●
●
●

●

●

●
●
●

●

●

●
●●●
●
●

●

●

●
●

●●
●

●

●●
●
●

●
●

●
●
●●

●

●

●

●

●
●
●●
●●

●
●
●

●
●

●●●●

●
●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●

●●
●
●

●
●

●

●
●
●

●
●

●
●●

●
●
●
●
●
●
●

●

●
●

●●●

●

●
●

●
●

●
●

●●
●
●

●

●●●

●

●
●
●

●
●

●●

●●

●

●

●
●●

●●
●
●●
●

●

●
●
●●

●

●
●

●●

●●

●
●

●●
●●●●●

●

●

●

●●
●

●

●●
●
●

●

●●

●

●
●●

●
●

●
●
●

●
●

●

●

●●

●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●●
●●

●
●●
●

●
●

●
●

●

●
●
●

●

●

●●

●
●

●
●●
●

●

●
●
●
●
●
●●
●

●

●●
●
●

●
●

●

●
●

●

●

●
●
●
●●●

●

●

●

●
●

●
●
●
●

●

●●
●
●●
●
●

●

●
●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●●●
●
●

●
●

●

●

●

●●●

●

●
●

●

●
●
●

●
●
●

●●●

●

●●●
●
●

●
●●●

●
●
●

●

●●
●●
●●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●●

●
●
●
●

●

●●
●●

●●

●
●
●

●
●

●

●
●
●

●●●

●

●●
●●●

●
●
●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●
●●●
●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●
●
●
●
●

●
●
●

●

●

●

●●
●
●●

●●●

●

●
●●

●
●●
●
●●●

●

●

●
●
●●

●
●
●

●●●
●

●
●

●

●●●
●
●●●●

●
●

●

●

●●

●
●
●

●

●

●
●

●

●
●●

●●
●
●

●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●
●
●●
●

●
●
●

●

●

●

●

●

●●●●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●
●●

●
●●

●

●
●

●

●●

●

●
●
●

●
●

●
●
●
●

●

●

●●●

●
●

●
●
●
●

●●
●

●

●

●●●●

●
●
●

●

●

●●

●
●

●

●●

●

●
●

●
●
●

●
●

●
●
●●

●

●●●

●
●●
●

●

●

●

●

●

●

●
●
●
●

●

●
●●
●

●

●
●

●
●

●

●
●●

●
●
●●
●

●

●
●
●
●●
●●
●

●

●

●

●

●
●

●

●●

●

●●
●
●

●●

●
●
●
●●

●
●

●
●●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●●
●
●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●
●
●
●●

●

●●

●

●●

●

●
●●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●
●
●●

●
●●

●

●●

●

●

●●

●

●

●●

●

●
●●

●
●

●
●

●

●

●

●

●

●●●
●
●

●
●
●
●

●
●●
●
●

●●

●
●

●●
●

●●
●●

●

●

●●
●
●

●

●

●
●●

●

●

●

●●
●
●

●

●●

●

●

●

●

●
●

●

●●●
●
●
●
●

●

●
●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●●●
●●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●●
●
●

●

●
●
●
●●●

●
●
●
●

●

●

●●
●●

●

●●
●●
●

●

●
●
●
●

●
●

●

●●
●
●
●

●
●

●

●
●●

●
●

●

●
●

●
●

●

●
●
●
●
●

●

●

●

●
●
●
●●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●●
●

●
●
●
●

●
●
●

●

●

●

●
●

●
●●●
●
●

●

●

●●

●

●
●●

●●●

●
●

●●

●
●

●
●
●
●●●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●●

●
●
●
●
●

●

●●
●
●

●

●
●●
●
●

●

●●

●●

●●
●

●
●

●

●

●

●●

●
●

●
●

●
●

●●

●●

●

●
●

●

●

●●

●●
●
●
●
●

●
●
●●

●
●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●
●●●
●

●●

●
●
●
●
●

●●
●
●
●

●
●

●

●

●
●

●●
●

●

●
●●

●

●

●
●
●
●
●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●●

●●
●●

●
●

●
●

●
●●
●

●

●

●

●

●
●

●
●

●
●

●●●
●●

●

●
●●
●

●
●

●

●●
●
●●
●

●

●

●
●

●

●
●●
●●●
●●

●

●

●
●●

●

●
●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●
●●

●●

●

●

●

●

●●
●●●
●

●
●

●

●●
●

●

●
●
●
●

●

●

●●
●

●
●
●

●

●

●

●
●

●
●

●●
●●

●●

●

●
●●

●
●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●
●
●
●
●●

●

●●●

●●
●

●
●●

●

●
●

●

●

●

●
●
●
●

●

●

●
●
●
●●

●

●

●
●●

●

●
●
●

●

●

●
●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●●
●

●
●
●
●

●

●
●

●
●

●

●

●
●●●
●

●●

●
●
●
●

●●●

●
●

●

●

●

●

●
●●

●
●
●●●
●

●
●
●
●●

●

●

●
●

●
●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●
●●

●
●
●

●

●●
●

●

●

●●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●●
●

●
●●

●●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●
●

●●●

●

●
●

●

●

●

●
●●●

●●
●

●

●
●
●●
●

●
●
●
●
●

●
●●
●

●
●●

●

●

●

●

●●

●

●

●●
●

●

●●
●

●
●

●
●
●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●
●
●

●

●
●
●

●

●

●

●
●●
●
●
●
●●

●

●●
●
●

●
●

●

●

●
●

●

●
●
●

●

●

●
●
●
●●●
●
●●
●

●

●

●●
●

●●

●

●●

●

●
●

●●

●
●
●
●

●

●

●
●

●●

●

●

●
●
●
●●●
●●

●

●●
●

●

●
●

●

●
●
●●

●

●

●

●

●
●●

●●
●

●

●

●

●

●
●

●●
●
●

●

●
●
●
●●●
●
●
●●
●
●
●

●●

●
●
●
●

●

●
●

●

●
●

●

●●
●
●●
●
●

●

●

●

●
●●
●

●
●

●
●

●
●

●

●
●
●
●

●

●
●

●
●
●
●
●●
●
●
●
●

●

●

●

●
●
●
●
●●●

●

●

●

●

●
●

●●

●

●
●
●

●
●
●

●
●●●

●

●

●

●●

●●

●
●

●
●

●●

●

●

●
●
●

●

●

●●

●

●
●●●
●
●

●
●

●

●●●●

●
●

●
●
●

●
●
●

●

●
●
●

●
●

●

●
●
●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●
●

●●
●

●

●

●●
●

●

●
●

●●

●
●

●

●
●
●
●
●

●●
●

●

●●

●●
●

●

●●

●
●

●
●
●

●

●
●

●
●
●

●
●●

●
●

●

●

●

●●
●
●

●●

●
●

●
●

●

●
●

●

●
●

●
●●

●●●
●
●
●
●
●

●

●

●●
●

●
●

●

●
●

●

●
●
●

●
●

●●●
●

●
●●

●●

●
●●

●

●
●
●

●

●
●●●

●
●
●

●
●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●
●●

●

●
●

●●

●

●

●●
●

●

●●
●
●●
●

●●
●

●

●

●

●●
●

●
●

●●

●
●

●

●
●

●
●

●●
●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●●
●
●●
●

●

●

●
●
●
●●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●
●●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●

●

●
●●

●
●●

●
●●
●

●
●

●
●

●

●●
●
●

●

●

●
●

●
●

●●

●

●
●

●
●●

●●●

●

●

●

●

●●

●

●
●
●
●
●
●

●

●
●

●

●
●●
●●

●
●

●

●
●
●
●

●

●
●●
●

●●

●

●

●
●
●
●

●●

●

●
●

●

●●

●

●
●●
●
●
●●
●●
●

●
●●

●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●

●
●●
●
●
●

●
●

●

●
●
●●
●●
●●●

●
●

●●
●

●

●●

●
●
●
●

●

●

●

●●●

●●

●

●

●
●

●
●

●
●●

●●

●
●

●

●●

●
●●
●

●
●
●●

●
●

●

●●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●●●●

●

●

●●●●
●

●
●●
●

●

●
●

●
●
●

●
●

●

●

●

●

●●

●
●
●
●

●

●

●
●
●
●●●
●

●●

●●
●

●

●●

●

●●
●
●

●
●
●●
●

●●●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●●

●
●

●●

●

●

●
●
●●
●
●
●

●
●

●

●

●

●●
●
●
●

●

●
●
●

●

●
●

●
●●

●●
●

●●
●
●
●●

●

●
●

●

●

●●●
●
●●

●

●●
●

●
●●
●
●
●

●

●●●
●
●

●

●

●
●

●●
●

●

●

●
●
●

●

●
●

●

●●

●●

●
●

●

●

●●
●
●●
●●

●
●
●

●
●

●

●

●●

●

●

●●

●
●●●●

●

●
●
●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●

●

●
●●●

●●
●

●
●●
●
●
●

●

●
●●

●
●●

●

●

●●
●

●
●

●

●

●

●
●●
●

●
●
●

●

●

●

●

●

●

●●●
●

●●

●●

●
●

●

●

●
●
●

●

●●

●
●
●
●
●
●
●

●
●

●
●
●
●
●
●●

●●

●
●
●

●●

●
●

●
●

●

●●

●
●

●
●

●

●●
●
●

●
●
●

●
●

●●
●

●●

●

●●

●
●
●
●

●

●

●●

●
●
●

●

●
●
●
●

●

●

●

●

●
●
●
●

●●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●
●
●●●●

●

●

●

●●

●
●
●

●

●
●
●●
●

●

●

●

●●

●

●

●●●

●

●
●
●

●
●
●

●

●

●
●
●

●●
●

●

●●
●●
●
●
●
●

●
●

●●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●
●●

●
●●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●
●
●
●

●●

●●

●

●

●
●
●●
●

●
●
●
●
●

●●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●
●

●
●
●
●

●

●
●
●●
●
●
●

●
●

●
●

●
●

●
●
●●●

●●
●
●
●
●●

●
●
●
●
●●
●

●

●●
●

●●

●●●

●

●

●
●
●
●●
●●

●

●

●

●

●●

●●

●

●●

●
●

●
●

●●

●●

●

●

●

●

●
●
●

●
●

●

●
●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●

●
●

●●
●

●
●
●
●
●●
●●

●
●
●

●

●

●
●

●
●
●

●

●
●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●
●
●
●
●

●
●
●●

●●

●

●●

●

●●
●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●
●
●

●●●

●

●

●
●
●
●
●
●
●

●
●

●
●
●
●

●
●

●

●
●●

●
●
●

●

●●●
●●●

●

●●

●

●

●
●

●●

●
●
●
●

●
●●

●
●
●

●

●●
●
●
●

●●

●●
●

●

●●
●●

●

●

●

●
●

●●

●
●

●

●
●

●●
●

●

●
●

●
●
●

●●
●

●

●
●●

●
●

●
●●
●

●●
●
●

●
●

●
●
●
●●

●

●

●
●

●

●

●
●
●●●●

●

●

●

●

●
●

●
●

●

●

●●●

●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●●

●
●
●
●
●
●
●●

●
●

●
●

●

●
●

●
●●
●
●

●

●

●

●

●●

●
●

●

●
●
●●

●

●
●
●
●

●●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

0 10 20 30 40 50

50
0

60
0

70
0

80
0

90
0

10
00

Time

F
re

qu
en

cy

A

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●
●

●

●

●

900 1000 1100 1200

0.
00

0.
05

0.
10

0.
15

N
R

el
at

iv
e

fr
eq

ue
nc

y

B

● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ● ● ● ●

Figure 2: A. Individual realizations of the logistic-growth model using the direct method (·),
explicit tau-leap method (•), binomial tau-leap method (2), and optimized tau-leap method
(4). The solid black line is the deterministic trajectory. Each point represents 20 time
steps. B. Distribution of relative population sizes from 10000 realizations for each of the SSA
methods (each realization ran for 100 time units). Same markers as in panel A except for the
direct method that is indicated with a solid line without markers.

This model consists of five reactions: prey birth (R1); prey death due to non-predatory
events (R2); prey death due to predation (R3); predator birth (R4); and predator death
(R5). Assuming r = b − d (see logistic-growth model), the propensity functions are defined
as a1(x) = bN , a2(x) = d + r(N/K)N , a3(x) = α/(1 + wN)NP , a4(x) = cα/(1 + wN)NP ,
and a5(x) = gP (Pineda-Krch et al. 2007) and the state-change matrix,

ν =
[

+1 −1 −1 0 0
0 0 0 +1 −1

]
. (3)

Assuming b = 2, d = 1, K = 1000, α = 0.007, w = 0.0035, c = 2, g = 2, and X(0) =
(1000, 100) the model can be defined as,

R> parms <- c(b = 2, d = 1, K = 1000, alpha = 0.007,
+ w = 0.0035, c = 2, g = 2)
R> x0 <- c(N = 1000, P = 100)
R> nu <- matrix(c(+1, -1, -1, 0, 0,
+ 0, 0, 0, +1, -1),
+ nrow = 2, byrow = TRUE)
R> a <- c("b*N",
+ "(d+(b-d)*N/K)*N",
+ "alpha/(1+w*N)*N*P",
+ "c*alpha/(1+w*N)*N*P",
+ "g*P")

Journal of Statistical Software 11

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

● ●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 200 600 1000

0
20

0
40

0
60

0

N

P

D method

●

●

●

●●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

● ●

●

● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●●

●

● ● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

● ●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

0 200 600 1000

0
20

0
40

0
60

0

N

P

ETL method

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

0 200 600 1000

0
20

0
40

0
60

0

N

P

BTL method

●

●

●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●
●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

● ●

●●
●

●●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ● ●

●
●
●

●

●

●●

●
●

●
●

●

●

● ● ●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
● ●

●

●

●●

●

●

●

●

● ●
●

●

●
●

●

●●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●●
●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

0 200 600 1000

0
20

0
40

0
60

0

N

P

OTL method

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−3.0 −2.0 −1.0 0.0

0
1

2
3

4
5

6
7

log10((Frequency))

lo
g 1

0((
P

ow
er

))

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−3.0 −2.0 −1.0 0.0

0
1

2
3

4
5

6
7

log10((Frequency))

lo
g 1

0((
P

ow
er

))

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

−3.0 −2.0 −1.0 0.0

0
1

2
3

4
5

6
7

log10((Frequency))

lo
g 1

0((
P

ow
er

))
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

−3.0 −2.0 −1.0 0.0

0
1

2
3

4
5

6
7

log10((Frequency))

lo
g 1

0((
P

ow
er

))
Figure 3: Top panels: Phase plane trajectory of the Rosenzweig-MacArthur predator-prey
model for different SSA methods (D – direct method, ETL – explicit tau-leap method, BTL –
binomial tau-leap method, OTL – optimized tau-leap method). Bottom panels: Correspond-
ing power spectra for the predator populations (the power spectra for the prey populations
are identical). The simulations were run for 1000 time units and were censused every time
unit (censusinterval = 1). Data are same as in Table 1.

The following command runs this model for 100 time units using the direct method with
console output every 10 time units and a limit of the simulation duration to a maximum wall
time of 30 seconds:

R> out <- ssa(x0, a, nu, parms, tf = 100, method,
+ simName = "Predator-prey model",
+ verbose = TRUE,
+ consoleInterval = 10,
+ maxWallTime = 30)

Figure 3 shows the phase planes and power spectra of four realizations of the predator-prey
model, one for each SSA method. The distribution of sample points in the phase plane and
the spectral distribution of the dominant frequency are indistinguishable among all the SSA
methods. Because the populations were sampled every time unit (rather than every time step
as in Figure 2), the different method have the same number of data points (1000) while the
actual number of time steps executed spans three orders of magnitude with a corresponding
difference in the execution times (Table 1).

12 GillespieSSA: Stochastic Simulation Algorithm in R

4.3. SIRS metapopulation model

The classical Kermack-McKendrick SIRS model (Susceptible, Infectious, Recovered, Suscepti-
ble) is a compartment model of the number of individuals infected with a contagious illness in
a closed population over time (Kermack and McKendrick 1927). It assumes that: population
size is constant (i.e., no births or deaths); there is no incubation period of the infectious agent;
the duration of infectivity is same as length of the disease; and individuals losing immunity
join the susceptible class again. In this version of the model, inspired by the linear chain
system by Cao et al. (2004b), the population is structured into a number of patches, each one
of which has a constant population size P . Disease transmission occurs both within patches
(intra-patch) and between patches (inter-patch), and individuals in the immune compartment
lose their immunity at a certain rate and become susceptible again. Assuming that trans-
mission only occurs between adjacent patches in the clock-wise direction, with the last patch
in the chain infecting the first patch, this model can be described by the following coupled
differential equations,

dSi
dt

= −βSi

[
(1− ε)Ii + εI(i mod U+1)

]
+ ρ(P − Si − Ii)

dIi
dt

= βSi

[
(1− ε)Ii + εI(i mod U+1)

]
− γIi.

(4)

Here Si is the number of susceptible individuals and Ii is the number of infected individuals
in patch i, i = (1, . . . , U), ε is the probability of inter-patch contact, (1− ε) is the probability
of intra-patch contact, β is the transmission coefficient, γ is the disease clearance rate, and ρ
is the rate at which immunity is lost. Because each patch has a constant population size, the
recovered state (R) does not have to be treated explicitly.

Each patch consists of two states, N = 2 (susceptible and infectious), and four reactions, M =
4. Thus, in a system with U patches, there are 2U number of states and 4U number of reaction.
Each patch v, v = (1, . . . , U), has the following four reactions: intra-patch transmission
(R1+(v−1)U); inter-patch transmission (R2+(v−1)U); loss of infectiousness (R3+(v−1)U); and
loss of immunity (R4+(v−1)U). The corresponding propensity functions are a1+(v−1)U (x) =
(1− ε)βSiIi, a2+(v−1)U (x) = εβSiI(i mod U+1), a3+(v−1)U (x) = γIi, and a4+(v−1)U (x) = ρ(P −
Si − Ii).
The state-change matrix for a system with U patches is a 2U × 4U block diagonal matrix

ν =

 ν̃1

. . .
ν̃U

 (5)

where the submatrices on the diagonal are the state-change matrices for each individual patch,

ν̃v =
[
−1 −1 0 +1
+1 +1 −1 0

]
. (6)

If the dimensions nν×mν of the state-change matrix ν are smaller than the dimensions of the
state vector nx and the propensity vector ma, ssa() checks if ν is a diagonal block matrix. If
it is, a separate set of SSA methods are invoked, ssa.[method].diag(). These methods define
a virtual full sized NU ×MU state-change matrix by mapping reaction j and state i to the
smaller N ×M state-change matrix ν̃. This procedure reduces the number of elements in the

Journal of Statistical Software 13

state-change matrix by a factor of U2 which simplifies the definition of the matrix and reduces
memory requirements, particularly for large systems. This virtualization of the state-change
matrix has (to my best knowledge) previously not been described in the literature. Further
work is required to establish the extent to which it improves the computational efficiency of
different Monte Carlo implementations of the SSA.

Assuming U = 100, P = 500, and a single infectious individual at t = 0, the initial state
vector can be defined in a vectorized form, first by assigning the population sizes for the 2U
states and then by assigning each element the corresponding name,

R> U <- 100
R> N <- 500
R> x0 <- c((N-1), 1, rep(0,(2*U)-2))
R> names(x0) <- c(paste(c("S", "I"), floor(seq(1, (U+0.5), 0.5)), sep = ""))

Similarly the propensity functions are created iterativelly,

R> a <- NULL
R> for (patch in (seq(U))) {
+ i <- patch # Intra-patch index
+ if (patch == 1) j <- U # Inter-patch index
+ else j <- patch-1
+ a_patch <- c(paste("(1-epsilon)*beta*S", i, "*I", i, "", sep = ""),
+ paste("epsilon*beta*S", i, "*I", j, sep = ""),
+ paste("gamma*I", i, sep = ""),
+ paste("rho*(N-S", i, "-I", i,")", sep = ""))
+ a <- c(a, a_patch)
+ }

Finally the parameters are defined and the simulation is run for 10 time units using the
explicit tau-leap method (method="ETL"),

R> parms <- c(beta = .001, gamma = .1, rho = .005, epsilon = .01, N = 500)
R> out <- ssa(x0, a, nu, parms, tf = 10, method = "ETL",
+ simName = "SIRS patch model")

Figure 4 illustrates the spread of the outbreak through the chain of patches using the different
SSA methods. While there is no perceptible difference in the rate of spread and the extent
of the outbreak, there are as expected substantial differences in the computational timings
(Table 1) with the binomial tau-leap method running two orders of magnitude faster than
the direct and optimized tau-leap methods. The slowest method was the optimized tau-leap
method, even though it had 7% fewer time steps than the direct method. A closer inspection
of the simulation statistics reveals that the majority of time steps were suspended tau-leaps.
Evaluating

R> out$stats$nSuspendedTauLeaps / out$stats$nSteps

[1] 0.99075

14 GillespieSSA: Stochastic Simulation Algorithm in R

Figure 4: Individual realizations of the SIRS metapopulation model using the four different
SSA methods (same abbreviations as in Figure 3). The intensity of the grey shading indicates
the relative number of individuals that are in the infectious class. The data are the same as
in Table 1 (here showing only the first 1000 time units).

reveals that 99% of the time steps were performed using the direct method, which occurs
when τnc < D/a0(x) (see description of the OTL method in Section 2.5).

5. Discussion

Using three biological models as examples, this paper shows how to define stochastic models
within the framework of SSA theory and implement them in R using the GillespieSSA package.
The results show that while all implemented SSA methods generate consistent and virtually
identical results they exhibit large differences in computational efficiency. The simulation
results confirm that the approximate methods can be several orders of magnitude faster than
the exact method, while generating results that are indistinguishable from its results. This
suggests that approximate methods are good alternatives to the direct method, even for
models exhibiting complex dynamics such as large-amplitude population cycles.

The relative timing performance of the approximate methods, however, is not as consistent.
While the binomial tau-leap method outperforms the other methods in the logistic-growth
model, it performs relatively poorly in the predator-prey and metapopulation model. Sim-
ilarly, the optimized tau-leap method performs very well in the predator-prey model but is
slower than the direct method for the metapopulation model (Table 1). This suggests that
while approximate methods will perform better than the direct method the majority of the

Journal of Statistical Software 15

Logistic-growth model
D ETL BTL OTL

Duration scaled to D 1 13969 63904 899
Elapsed WT 60070 4.3 0.94 66.8
Mean step size 0.25 50 251 15
Nr of steps 3, 980, 814 20001 3980 67267

Predator-prey model
D ETL BTL OTL

Duration scaled to D 1 95 111 5019
Elapsed WT 25096 264 227 5
Mean step size 0.5 50 52 110
Nr of steps 1, 915, 828 200, 001 192, 213 3, 153

Metapopulation SIRS model
D ETL BTL OTL

Duration scaled to D 1 53 5 1
Elapsed WT 12560 241 2478 12699
Mean step size 2.2 100 2.2 2.4
Nr of steps 909, 254 20, 001 89, 040 850, 164

Table 1: Simulation statistics of the example models using the different SSA method (same
abbreviations as in Figure 3). A single realization was run for each model-method combina-
tion. The logistic-growth model and the predator-prey model were run for 1000 time units
(same data as in Figure 3), and the SIRS metapopulation model was run for 2000 time units
with U = 100 (same data as in Figure 4). Elapsed wall time (WT) is in seconds, mean step
size is in 1/1000 simulation time unit, and step duration is in 1/1000 second. All methods
were run with their default SSA arguments (see Pineda-Krch 2008).

time, selecting the most efficient approximate method is not straight forward. To date, few
studies have addressed the significance of appropriate method selection for models exhibiting
a wide range of dynamical behaviours.

All of the simulations in this paper have used the default arguments of the ssa() function.
Several of the methods, however, have additional formal arguments that can be used to opti-
mize the performance of the method, both in terms of speed and accuracy (see Pineda-Krch
2008, for more details). For example, increasing the step size (tau) in the explicit tau-leap
method will invariably result in fewer total steps. The corresponding increase in performance
is bought, however, at the expense of accuracy in the results. This raises the important
question of how to assess the accuracy of simulation results obtained from approximate SSA
methods. One possible approach is to compare the results from the stochastic simulations to
the predictions of the corresponding deterministic formulation, i.e., the numerical or analyti-
cal solutions of the set of coupled ordinary differential equations (ODEs) (see Figure 2). This
approach may not, however, be feasible in large-scale systems with complex dynamics, such
as the SIRS metapopulation model, and it also assumes that the dynamics of the stochastic
model are the same as those of the deterministic formulation, which is not always the case

16 GillespieSSA: Stochastic Simulation Algorithm in R

(Pineda-Krch et al. 2007). An alternative method commonly used is to obtain an ensemble
of trajectories by running many individual realizations (each one with a different seed for
the random number generator) and comparing the probability density functions of the state
variables to results obtained using an exact method (see Figure 2B). Although the comparison
of the distributions is often visual (Gillespie 2001; Chatterjee et al. 2005; Cao et al. 2006)
quantitative comparisons of the distance between the distributions is also possible (Cao et al.
2004a).

6. Future development

Future developments of the package will occur in two main directions. Firstly, recoding of the
method functions in a lower-level compiled language to improve the computational efficiency.
Secondly, the addition of new method functions, particularly multiscale SSA methods opti-
mized for stiff systems, i.e., a continuous time system characterized by well-separated fast and
slow dynamical modes, the fastest of which is stable (Gillespie 2007). As part of this process
user contributions and improvements are welcomed, e.g., improvements to existing methods
as well as the addition of new methods (stone soup).

Computational details

The logistic-growth and the SIRS metapopulation models were run on a 20-node Linux cluster
(SUSE Linux 9.3), on which each node has dual 2.4GHz AMD Opteron CPUs and 12GB RAM.
The predator-prey model was run using Windows XP on a Lenovo laptop with a 1.99GHz
Intel Core 2 processor and 2GB RAM. All simulations were performed using R 2.5.1 (R
Development Core Team 2007a) with the Mersenne-Twister random number generator. The
example models are available in the package as demonstration models. Individual realizations
can be run using

R> demo("logisticGrowth", package = "GillespieSSA")
R> demo("rma", package = "GillespieSSA")
R> demo("epiChain", package = "GillespieSSA")

Note that some of the parameter values in the demonstration models differ from those pre-
sented in the paper and where chosen to make the simulations shorter and more manageable.
An R script that employs exactly the same parameter settings as for the paper is available
along with this paper. Both R and GillespieSSA are available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/.

Acknowledgments

Heinrich zu Dohna, Ben Bolker, Josh Obrien, Thomas Petzoldt, and three anonymous review-
ers for constructive feedback on the GillespieSSA package and comments on the manuscript.
Parts of the simulations were performed on the Center for Animal Disease Modeling and
Surveillance Linux cluster at University of California, Davis.

http://CRAN.R-project.org/

Journal of Statistical Software 17

References

Arkin A, Ross J, McAdams HH (1998). “Stochastic Kinetic Analysis of a Developmental
Pathway Bifurcation in Phage-λ E. coli Cell.” Genetics, 149, 1633–1648.

Brown D, Rothery P (1994). Models in Biology: Mathematics, Statistics and Computing.
John Wiley & Sons.

Cao Y, Gillespie DT, Petzold LR (2006). “Efficient Step Size Selection for the Tau-Leaping
Simulation Method.” Journal of Chemical Physics, 124, 044109.

Cao Y, Hall A, Li H, Lampoudi S, Petzold L (2004a). User’s Guide to StochKit. Computa-
tional Science and Engineering, UCSB.

Cao Y, Li H, Petzold L (2004b). “Efficient Formulation of the Stochastic Simulation Algorithm
for Chemically Reacting Systems.” Journal of Chemical Physics, 121, 4059–4067.

Chatterjee A, Vlachos DG, Katsoulakis MA (2005). “Binomial Distribution Based τ -leaping
Accelerated Stochastic Simulation.” Journal of Chemical Physics, 122(024112), 1–7.

Dushoff J, Plotkin JB, Levin SA, Earn DJD (2004). “Dynamic Resonance Can Account
for Seasonality in Influenza Epidemics.” Proceedings of the National Academy of Sciences
(USA), 101, 16915–16916.

Fedoroff NV, Fontana W (2002). “Small Numbers of Big Molecules.” Science, 297, 1129–1131.

Gibson MA, Bruck J (2000). “Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels.” Journal of Physical Chemistry, 105, 1876–1889.

Gillespie DT (1976). “A General Method for Numerically Simulating the Stochastic Time
Evolution of Coupled Chemical Reactions.” Journal of Computational Physics, 22, 403–
434.

Gillespie DT (1977). “Exact Stochastic Simulation of Coupled Chemical Reactions.” Journal
of Physical Chemistry, 81, 2340–2360.

Gillespie DT (2001). “Approximate Accelerated Stochastic Simulation of Chemically Reacting
Systems.” Journal of Chemical Physics, 115, 1716–1733.

Gillespie DT (2007). “Stochastic Simulation of Chemical Kinetics.” Annual Review of Physical
Chemistry, 58, 35–55.

Kermack WO, McKendrick AG (1927). “A Contribution to the Mathematical Theory of
Epidemics.” Proceedings of the Royal Society, London A, 115, 700–721.

Kot M (2001). Elements of Mathematical Ecology. Cambridge University Press.

McAdams HH, Arkin A (2005). “Stochastic Mechanisms in Gene Expression.” Proceedings of
the National Acadademy of Sciences (USA), 94, 814–819.

McKane AJ, Newman TJ (2005). “Predator-Prey Cycles From Resonant Amplification of
Demographic Stochasticity.” Physics Review Letters, 94, 218102.

18 GillespieSSA: Stochastic Simulation Algorithm in R

Nisbet RM, Gurney WSC (1976). “A Simple Mechanism for Population Cycles.” Nature, 263,
319–320.

Petzoldt T, Rinke K (2007). “simecol: An Object-Oriented Framework for Ecological Mod-
elling in R.” Journal of Statistical Software, 22(9), 1–31. URL http://www.jstatsoft.
org/v22/i09/.

Pineda-Krch M (2008). GillespieSSA: Gillespie’s Stochastic Simulation Algorithm (SSA).
R package version 0.5-2, URL http://CRAN.R-project.org/package=GillespieSSA.

Pineda-Krch M, Blok H, Dieckmann U, Doebeli M (2007). “A Tale of Two Cycles: Distin-
guishing Quasi-Cycles and Limit Cycles in Finite Predator-Prey Populations.” Oikos, 116,
53–64.

R Development Core Team (2007a). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

R Development Core Team (2007b). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org/.

Rosenzweig ML, MacArthur RH (1963). “Graphical Representation and Stability Conditions
of Predator-Prey Interactions.” The American Naturalist, 97, 209–223.

Rossini AJ, Tierney L, Li N (2007). “Simple Parallel Statistical Computing in R.” Journal of
Computational and Graphical Statistics, 16, 399–420.

Tian T, Burrage K (2004). “Binomial Leap Methods for Simulating Stochastic Chemical
Kinetics.” Journal of Chemical Physics, 121, 10356–10364.

Affiliation:

Mario Pineda-Krch
Center for Animal Disease Modeling and Surveillance
Department of Medicine and Epidemiology
School of Veterinary Medicine
University of California, Davis
95616, CA, United States of America
E-mail: mpineda@ucdavis.edu
URL: http://pineda-krch.com/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 25, Issue 12 Submitted: 2007-10-19
April 2008 Accepted: 2008-02-01

http://www.jstatsoft.org/v22/i09/
http://www.jstatsoft.org/v22/i09/
http://CRAN.R-project.org/package=GillespieSSA
http://www.R-project.org/
http://www.R-project.org/
mailto:mpineda@ucdavis.edu
http://pineda-krch.com/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	The Gillespie stochastic simulation algorithm
	Exact SSA
	Approximate SSAs
	Explicit tau-leap (ETL)
	Binomial tau-leap (BTL)
	Optimized tau-leap (OTL)

	Implementing the SSA in R
	Example models
	Logistic growth
	Predator-prey model
	SIRS metapopulation model

	Discussion
	Future development

