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Abstract

When ionizing radiation strikes a cell it induces DNA double strand breaks (DSBs).

Subsequently, some of the DSBs misrejoin and thus cause alterations in the size distri-

bution of the DNA fragments. We derive a system of non-linear integro-di�erential

equations describing the misrejoining interactions of ®ve classes of DNA fragments, in-

cluding rings and various types of linear fragments. The fragment classes are represent-

ed by density functions; the shape of a density function determines the probability that a

fragment has a particular size and the amplitude (integral) equals the expected number

of such fragments per cell. The equations are solved: analytically for exponentially dis-

tributed initial fragment sizes (corresponding to high doses) and numerically for arbi-

trary initial conditions. Computed ®nal fragment size distributions are applied to

situations representative of ¯ow karyotypes and pulsed-®eld gel assays. For human ¯ow

karyotypes, the model can be used to obtain misrejoining estimates at doses too high for

conventional methods of data analysis. For pulsed-®eld gel assays in which human chro-

mosomes are digested with restriction endonucleases to form `cut-somes' (restriction

fragments), the model provides a means of misrejoining estimation when the cut-some

sizes are non-random. The model suggests that if the cut-some size distribution for un-

irradiated cells is completely random, misrejoining of radiation-induced DSBs will not

be detectable in the ®nal size distribution. Ó 1998 Elsevier Science Inc. All rights re-

served.
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1. Introduction

Ionizing radiation induces DNA double strand breaks (DSBs) 1 which can
subsequently misrejoin within a cell. Since DSB misrejoining is believed to play
a key role in radiation carcinogenesis [1], characterizing the mechanisms of
DSB misrejoining is an important aspect of radiation risk assessment.

Misrejoining leads to reshu�ing of chromosome fragments, thus altering
their sizes. In a typical approach to misrejoining estimation [2], measured
DNA fragment size distributions are converted to a total quantity (e.g. the
fraction of fragments outside a band of speci®c sizes) which is then further con-
verted to misrejoinings. To improve such estimates, models that relate misre-
joinings to a theoretical fragment size distribution are needed so that
distribution-based (least squares or maximum likelihood) estimates can be
made directly from the data, thus increasing the amount of measured distribu-
tion shape information transferred to the estimates. Although induced (i.e. ini-
tial) DNA fragment size distribution models have been developed [3±7] and
used to form distribution-based DSB estimates immediately following an acute
exposure [8,9], no misrejoining estimates based on theoretical size distributions
during and after misrejoining have yet been published. We here present a mod-
el of the size distribution dynamics of misrejoining DNA fragments. The model
can lead to distribution-based estimates of the ®nal number of misrejoinings
using data from: (1) pulsed-®eld gel electrophoresis (PFGE) applied to misre-
joined human chromosomes that have been cut with restriction enzymes imme-
diately before measurement; or (2) ¯ow karyotypes following irradiation at
doses greater than 10 Gy (conventional methods [10] can be applied at lower
doses).

We shall ®rst review the standard model for size distributions just after an
acute dose of low LET (i.e. sparsely ionizing) radiation. Then we will introduce
a set of non-linear integro-di�erential equations that represent the temporal
evolution of sizes for misrejoining chromosomes. Densities are used to describe
size distributions of rings and of linear fragments with two, one or no reactive
ends. Despite the non-linearity of the equations, we show that the time devel-
opment can be explicitly integrated by techniques involving Fourier transforms
of the densities. The relevance of ®nal size distributions (i.e. after misrejoining

1 Abbreviations: DSB� double-strand break; EtBr� ethidium bromide; LET� linear energy

transfer; PFGE�pulsed-®eld gel electrophoresis; SSEB�Sax subset ethidium bromide; FFT� fast

Fourier transform; PRA�peak reduction algorithm; BNA� background number algorithm.
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has run its full course) to ¯ow karyotype data and PFGE measurements are
then discussed.

2. Background

2.1. DSB misrejoining

In an unirradiated human cell during the G0=G1 part of the cell cycle, there
are 46 chromosomes. Each chromosome has a telomere at each of its two ends.
The chromosomes vary in size, from about 60 Mb (1 Mb � 106 base pairs) to
almost 300 Mb. After an acute dose of ionizing radiation, double-strand breaks
(DSBs) cut the chromosomes into DNA fragments of various sizes. Each DSB
has two free ends. In a breakage-and-reunion scenario, similar to that original-
ly suggested by Sax [11] and others, a free end can undergo binary misrejoining
by pairing up with a free end from a di�erent DSB. The result is a reshu�ing of
chromosomes that entails changes in the pattern of chromosome sizes. During
this misrejoining process the telomeres are inert.

It is known that the majority of DSBs induced by radiation do not partici-
pate in misrejoining. Rather, the two free ends of a DSB `eurejoin', i.e. rejoin
with each other to restore the original DNA sequence, or at most cause a local
alteration too small to show up in the size distribution assays of interest here.
We shall here refer to the DSBs that do participate in misrejoining as `reactive',
i.e., in the terminology of Radivoyevitch et al. [12], reactive DSBs are active
DSBs which do not undergo accidental binary eurepair. Experimental esti-
mates for the fraction of DSBs that are reactive, and theoretical methods for
calculating this fraction as a function of radiation dose, are summarized else-
where [7,12]. The experimental assays to be discussed in the present paper
are sensitive only to misrejoinings, so that only the reactive DSBs are relevant
here.

2.2. The ethidium bromide (EtBr) model

Fragment size distribution models are formulated in terms of fragment num-
ber densities nc�x; t�, where x is the fragment size (DNA content) and nc�x; t� dx
is the expected number of type c fragments in the interval �x; x� dx� at time t.
We consider ®ve types of fragment number densities in irradiated cells:
1. nat�x; t� ± the number density of `edges', i.e. of fragments in which one end is

the free end of a reactive DSB while the other end is telomeric;
2. naa�x; t� ± the number density of `internals', fragments both of whose ends

are free ends of (di�erent) reactive DSBs;
3. ntt�x; t� ± the number density of `bitelomeres', misrejoined fragments in

which both ends are telomeric;
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4. nr�x; t� ± the number density of ring fragments; and
5. nd�x; t� ± the number density of `delta' fragments, chromosomes that never

contained a reactive DSB. 2

Note that each of these fragment densities can be viewed as an amplitude
factor Nc�t�, the expected number of type c fragments, multiplied by a shape
factor pc�x; t�, the probability density that a fragment has size x, i.e.
nc�x; t� � Nc�t�pc�x; t�, where Nc�t� �

R1
0 nc�x; t� dx and

R1
0 pc�x; t� dx � 1.

The EtBr model (for reviews see Refs. [6,7]) is a parameterization of the den-
sity functions at t � 0�, just after acute irradiation but before DSBs have had
time to misrejoin; this implies ntt�x; 0�� � 0 and nr�x; 0�� � 0. The name `EtBr'
refers to the ethidium bromide treatment used to make DNA detectable in cer-
tain assays [6]. The EtBr model applies to low LET, i.e. to sparsely ionizing ra-
diation such as high-energy photons, but not in general to high LET, i.e. not to
densely ionizing radiation such as neutrons. We now provide a brief derivation
of the model for a cell with one chromosome of size S. Extending the derivation
to the case of N chromosomes is straightforward, see Eqs. (9) and (10).

The EtBr model assumes complete randomness, i.e. that each unit length of
DNA has equal probability k of incurring a reactive DSB, or equivalently [6],
that the number of DSBs on a particular DNA stretch of length x is Poisson
with mean kx. (The units of k, bpÿ1 in theoretical sections (e.g. here) and
Mbÿ1 in application sections (later), correspond to the inverse of the units used
for fragment sizes.) This randomness assumption is meant only for averages
over stretches of many thousands of base pairs, large compared to such local
structures as nucleosomes but small compared to a chromosome. Moreover,
the randomness assumption is not appropriate for high LET [13,14], so the
EtBr model is meant primarily for low LET. Randomness together with stan-
dard properties of the Poisson distribution imply that the probability that the
xth base pair of a chromosome is hit (with a reactive DSB) while the base pairs
between it and the 0th base pair (telomere) are unhit is keÿkx. Since there are
two edges per chromosome we have [6,7]

nat�x; 0�� � 2keÿkxu0�x; S�; �1�
where u0�x; S�, equal to one on the interval �0; S� and zero elsewhere, is used to
indicate that an edge cannot be larger than the original chromosome of size S.
For internal fragments, keÿkxk is the probability that two reactive DSBs occur
at two speci®c sites while the x base pairs between them remain untouched. As
there are S ÿ x chromosomal sites from which an internal of size x can arise,
one gets [6]

naa�x; 0�� � k2eÿkx�S ÿ x�u0�x; S�: �2�

2 Delta fragments are named after the Dirac delta function that describes their density of sizes.
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Finally, eÿkS is the probability that no DSBs strike the chromosome and thus

nd�x; 0�� � eÿkSd�xÿ S�; �3�
where d�xÿ S� is the Dirac delta function centered at x � S.

In these equations k is to be regarded as an input parameter whose value at
any particular radiation dose must be determined either by an experimental as-
say of total misrejoinings after misrejoining has run its full course, or by a sep-
arate model such as the SMBE (Sax Markov binary eurejoining/misrejoining)
model of Radivoyevitch et al. [12]. Recall that k refers only to DSBs that are
reactive. DSBs which will ultimately eurejoin but are temporarily present do
in¯uence size distributions observed with PFGE at t � 0� [7], but need not
and will not be considered in the following analysis.

We shall now develop a probabilistic formalism for calculating the time de-
velopment of size changes after various radiation doses, and discuss compari-
sons of the theoretical predictions for t � 1 with ¯ow karyotype experiments.
We shall show later that essentially the same formalism also applies to some
other experiments involving pulsed-®eld gel electrophoresis (PFGE) in which
restriction enzymes are used to cut the chromosomes into smaller pieces.

3. The Sax subset EtBr (SSEB) model

The Sax subset EtBr (SSEB) model is an extension of the EtBr model to in-
clude DSB misrejoining dynamics. In the acronymn, `Sax' refers to the type of
misrejoining (involving DSB free ends), `subset' indicates that only reactive
DSBs are considered (see above), and `EB' (for ethidium bromide) indicates
that fragments are uniformly detectable as, for example, with EtBr gel staining
(sequence speci®c probes require di�erent models [5,6]). The SSEB model is de-
®ned in this section and solved in subsequent sections. The model uses an ap-
proximation, essentially that ring formation is not too frequent, which will be
justi®ed retroactively when the model solutions are found.

Just after an acute dose (i.e. at t � 0�), all of the fragment density lies within
the edge, internal, and delta fragment pools, i.e. nr�x; 0�� � 0 � ntt�x; 0��. As
time evolves, DNA leaves the edge and internal pools and moves into the ring
and bitelomere pools. Fig. 1 depicts this process, showing that edges misrejoin
with edges to form bitelomeres, edges misrejoin with internals to form bigger
edges, internals misrejoin with other internals to form larger internals, and
an internal can misrejoin with itself to form a ring. The delta pool remains con-
stant. It is assumed that when the system reaches its ®nal state (i.e. after repair
and misrepair have run their full course; formally, at t � 1) all reactive DSB
free ends will have found partners, hence, the edge and internal fragment pools
will be empty, the correctly repaired fragments will all lie in the delta pool, and
the misrejoined fragments will be rings or bitelomeres.
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The dynamics that take place between the induced (i.e. initial) distribution
and the ®nal distribution will now be described, ®rst mathematically and then
by motivating descriptions. The equations of the SSEB model are the following:

onat�x; t�
ot

� ÿjnat�x; t�Nat�t� ÿ 2jnat�x; t�Naa�t�

� 2j
Zx

0

nat�x0; t�naa�xÿ x0; t� dx0; �4�

onaa�x; t�
ot

� ÿ4jnaa�x; t�Naa�t� ÿ 2jnaa�x; t�Nat�t�

� 2j
Zx

0

naa�x0; t�naa�xÿ x0; t� dx0; �5�

ontt�x; t�
ot

� j
2

Zx
0

nat�x0; t�nat�xÿ x0; t� dx0; �6�

onr�x; t�
ot

� jnaa�x; t�; �7�
ond�x; t�

ot
� 0; �8�

nat�x; 0�� � 2keÿkx
XN

j�1

u0�x; Sj�; naa�x; 0�� � k2eÿkx
XN

j�1

�Sj ÿ x�u0�x; Sj�;

�9�

nd�x; 0�� �
XN

j�1

d�xÿ Sj�eÿkSj ; nr�x; 0�� � 0; ntt�x; 0�� � 0; �10�

Fig. 1. This SSEB model fragment ¯ow graph illustrates that: (1) edges merge with edges to form

bitelomeres, (2) edges merge with internals to form larger edges, (3) internals merge with internals

to form larger internals, and (4) internals form rings.

112 T. Radivoyevitch et al. / Mathematical Biosciences 149 (1998) 107±136



where j is the binary misrepair rate constant for reactive DSB free ends [12],
Nc�t� �

R1
0

nc�x; t� dx is the total number of fragments in pool c (where c is ei-
ther at, aa, tt, r or d), k is the number of reactive DSBs per base pair at t � 0�

and also the number of misrejoined DSBs per base pair at t � 1, Sj is the size
of the jth chromosome, u0�x; Sj� equals one on the interval �0; Sj� and zero else-
where, d�xÿ Sj� is a Dirac delta function centered at x � Sj and N is the total
number of chromosomes within the cell.

The terms of the SSEB model fall into two categories: source terms such as
ÿjnat�x; t�Nat�t� in Eq. (4) and target terms. The source terms are negative be-
cause they withdraw fragment density to supply the target terms which are pos-
itive. The source terms include pool size factors such as Nat�t� because an edge
or internal of size x can react with any other edge or internal. The target terms
are convolution integrals that include all possible fragment interactions leading
to a misrejoined fragment of size x, i.e. all interactions between fragments of
size x0 and xÿ x0. Speci®c explanations for each equation are now given.

Eq. (4) describes the rate of size x edge fragment formation. The ®rst and
second terms are the rates at which density leaves nat�x; t� due to misrejoining
reactions. It is assumed that an edge of size x can react with any other edge or
internal with equal probability except that internals are twice as likely since
they have two reactive ends. The third term describes how density moves into
nat�x; t� through misrejoining events between all possible combinations of frag-
ments of size x0 and xÿ x0. This convolution term, when integrated over all x, is
equal in magnitude to the second term since any density lost from nat�x; t� by
reaction with an internal is regained by some other edge at some other x.

Eq. (5) describes the rate at which internal fragments of size x are formed.
The ®rst two terms are the rates at which fragment density leaves naa�x; t�
due to misrejoining events. Because internal fragments have two reactive ends,
the self-reaction rate is multiplied by a factor of 4 and the cross-reaction rate by
a factor of 2. The third term is an auto-convolution integral that represents the
formation of naa�x; t� through misrejoining events between two smaller internal
fragments. The convolution integral is multiplied by a factor of two, rather
than four, because fragment interactions on the interval x0 < 1

2
x are identical

with those on the interval x0 > 1
2

x. The total ¯ux (integral over x) of the ®rst
term equals twice the total ¯ux of the third term since the joining of two inter-
nal fragments produces one larger internal fragment. The loss of internal frag-
ments due to ring closure is neglected because it is a linear kinetic term that
cannot compete e�ectively with the quadratic kinetic terms (i.e. the loss of in-
ternals to larger internals and the loss of internals to edges). This neglect will be
justi®ed later, by appropriate numerical estimates.

Eq. (6) states that bitelomeric fragments of size x are synthesized by two
misrejoining edges whose lengths add to x. The total ¯ux (integral over x) of
the auto-convolution term equals one-half the total ¯ux of the ®rst term in
Eq. (4) since two misrejoining edges form one larger bitelomere.
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In Eq. (7), rings are synthesized at a rate equal to j times the density of inter-
nals. There is no change in size so there are no interactions with densities at oth-
er x values. The SSEB model does not quite conserve mass since, as mentioned,
the ¯ux entering the ring pool is neglected as a ¯ux leaving the internal pool.

The initial conditions, Eqs. (9) and (10), are those of the EtBr model discus-
sed above. Other initial conditions can also be solved, if they are known. Note
from Eq. (8) that the delta density remains at its initial condition, i.e.
nd�x; t� � nd�x; 0��.

4. SSEB pool size equations and solutions

Remarkably, the time integrals of the SSEB integro-di�erential Eqs. (4)±(7)
can be found. This section starts the integration process by solving for the pool
sizes, i.e. for the total number Nat�t� of edge fragments at time t and for similar
quantities.

The SSEB model integrated over x yields the pool size equations

dNat�t�
dt

� ÿjN 2
at�t�; �11�

dNaa�t�
dt

� ÿ2jN 2
aa�t� ÿ 2jNat�t�Naa�t�; �12�

dNtt�t�
dt

� j
2

N 2
at�t�; �13�

dNr�t�
dt

� jNaa�t�; �14�
dNd�t�

dt
� 0; �15�

Nat�0� � 2
XN

j�1

�1ÿ eÿkSj�; Naa�0� � kST ÿ
XN

j�1

�1ÿ eÿkSj�; �16�

Nd�0� �
XN

j�1

eÿkSj ; Nr�0� � 0; Ntt�0� � 0; �17�

where t � 0 (no superscript) is used as shorthand for t � 0�. The ®rst of these
equations integrates to Nat�t� � Nat�0�=�Nat�0�jt � 1�. To integrate the second,
introduce the combination U�t� � 2Naa�t� � Nat�t�; U�t� is interpreted as the to-
tal number of reactive DSB free ends at time t. Combining the ®rst equation
with twice the second and integrating gives U�t� � U�0�=�U�0�jt � 1� and thus

Naa�t� � 1

2
U�t� ÿ 1

2
Nat�t� �

1
2
U�0�

U�0�jt � 1
ÿ

1
2
Nat�0�

Nat�0�jt � 1
: �18�

The bitelomeric fragment pool size is solved as
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Ntt�t� � j
2

Zt

0

N 2
at�s� ds � j

2

Zt

0

N 2
at�0�

�Natjs� 1�2 ds

� Nat�0�
2

1ÿ 1

Nat�0�jt � 1

� �
� Nat�0�

2

Nat�0�jt
�Nat�0�jt � 1� ; �19�

Ntt�1� � Nat�0�
2

: �20�
Eq. (20) is intuitively clear: since edges continue to grab internals until they
grab another edge, the ®nal number of bitelomeric fragments must equal half
the initial number of edges. Note that Nd�1� � Nd�0�� and Nd�1��
Ntt�1� � Nd�0ÿ�.

The ring pool size Nr�t� is obtained from Eq. (14) by integrating Naa�t� in
Eq. (18):

Nr�t� � j
Zt

0

Naa�s� ds � j
1

2j
ln

U�0�jt � 1

Nat�0�jt � 1

� �

� 1

2
ln

U�0�jt � 1

Nat�0�jt � 1

� �
; �21�

Nr�1� � 1

2
ln

U�0�
Nat�0�

� �
� 1

2
ln 1� 2Naa�0�

Nat�0�
� �

: �22�
The qualitative form of Eq. (22) is reasonable: Nr�1� increases as Naa�0� in-
creases; it decreases with increasing Nat�0� because edge fragments are expected
to pull internals away from ring formation. Cells with many chromosomes are
therefore expected to allow the formation of relatively few rings since such
cells, when irradiated, contain many edges.

The initial pool sizes shown in Eqs. (16) and (17) have a simple interpretation
if one notes that kST is the expected number of reactive DSBs per cell andPN

j�1�1ÿ eÿkSj� is the expected number of chromosomes hit at least once. Thus
Eq. (16) states that there are two edges for every chromosome hit and that the
number of internals equals the total number of reactive DSBs minus those DSBs
spent making edges out of chromosomes (an internal cannot be made from a
chromosome until an edge is made ®rst). In Eq. (17), Nd�0� is the expected num-
ber of unhit chromosomes; misrejoined fragment pools are initially empty.

5. The Fourier transformed SSEB model

The time-integrals of the basic SSEB equations can be obtained using Fou-
rier transforms. The Fourier transform [15] of the SSEB model is 3

3 The Fourier transform of nc�x; t� is de®ned as ~nc�k; t� �
R1

0
nc�x; t�eÿikx dx; where i� �������ÿ1

p
.
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o~nat�k; t�
ot

� ÿj~nat�k; t�U�t� � 2j~nat�k; t�~naa�k; t�; �23�
o~naa�k; t�

ot
� ÿ2j~naa�k; t�U�t� � 2j~n2

aa�k; t�; �24�
o~ntt�k; t�

ot
� j

2
~n2

at�k; t�; �25�
o~nr�k; t�

ot
� j~naa�k; t�: �26�

Since Eq. (24) is uncoupled from the others we solve it ®rst. Let
~v�k; t� � 1=~naa�k; t�, and note that j

R t
0

U�s� ds � ln�U�0�jt � 1�, the second
equation then becomes

ÿ
_~v�k; t�
~v2�k; t� � ÿ

2jU�t�
~v�k; t� �

2j
~v2�k; t� ; �27�

_~v�k; t� � 2jU�t�~v�k; t� ÿ 2j; �28�

o
ot
�~v�k; t�exp ÿ 2j

Zt

0

U�s� ds

24 35 � ÿ2jexp ÿ 2j
Zt

0

U�s� ds

24 35; �29�

o
ot
�~v�k; t��U�0�jt � 1�ÿ2� � ÿ2j�U�0�jt � 1�ÿ2

; �30�

~v�k; t��U�0�jt � 1�ÿ2 ÿ ~v�k; 0� � 2

U�0� ��U�0�jt � 1�ÿ1 ÿ 1�; �31�

~v�k; t� � �U�0�jt � 1� ~v�k; 0��U�0�jt � 1� ÿ 2jt
� �

; �32�

~naa�k; t� � ~naa�k; 0�=�U�0�jt � 1�
U�0�jt � 1ÿ ~naa�k; 0�2jt

� ~naa�k; 0�
�U�0�jt � 1���U�0� ÿ 2~naa�k; 0��jt � 1�

�
1
2
U�0�

U�0�jt � 1
ÿ

1
2
�U�0� ÿ 2~naa�k; 0��

�U�0� ÿ 2~naa�k; 0��jt � 1
: �33�

This expression for the internal fragment density can be integrated to form the
ring density

~nr�k; t� � j
Zt

0

~naa�k; s� ds � 1

2
ln

U�0�jt � 1

�U�0� ÿ 2~naa�k; 0��jt � 1

 !
; �34�

~nr�k;1� � 1

2
ln

U�0�
U�0� ÿ 2~naa�k; 0�

 !
: �35�
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The edge density is given by

o~nat�k; t�
@t

� �2j~naa�k; t� ÿ jU�t��~nat�k; t�;
o~nat�k; t�

@t
ÿ �2j~naa�k; t� ÿ jU�t��~nat�k; t� � 0;

o
ot

~nat�k; t�exp ÿ
Zt

0

�2j~naa�k; s� ÿ jU�s�� ds

24 350@ 1A � 0;

~nat�k; t�exp ÿ
Zt

0

�2j~naa�k; s� ÿ jU�s�� ds

24 35 � ~nat�k; 0�;

~nat�k; t� � ~nat�k; 0�exp

Zt

0

�2j~naa�k; s� ÿ jU�s�� ds

24 35
� ~nat�k; 0�

U�0�jt � 1
exp

Zt

0

2j~naa�k; s� ds

24 35
� ~nat�k; 0�

U�0�jt � 1

U�0�jt � 1

�U�0� ÿ 2~nat�k; 0��jt � 1

� ~nat�k; 0�
�U�0� ÿ 2~naa�k; 0��jt � 1

: �36�

This solution can be squared and integrated over time to obtain the bitelomeric
density, i.e.

o~ntt�k; t�
@t

� j
2

~n2
at�k; 0�

��U�0� ÿ 2~naa�k; 0��jt � 1�2 ; �37�

~ntt�k; t� � 1

2

~n2
at�k; 0�

U�0� ÿ 2~naa�k; 0� 1ÿ 1

�U�0� ÿ 2~naa�k; 0��jt � 1

 !

� 1

2

~n2
at�k; 0�

U�0� ÿ 2~naa�k; 0�
�U�0� ÿ 2~naa�k; 0��jt
�U�0� ÿ 2~naa�k; 0��jt � 1

 !

� 1

2

~n2
at�k; 0�jt

�U�0� ÿ 2~naa�k; 0��jt � 1
; �38�

~ntt�k;1� � 1

2

~n2
at�k; 0�

U�0� ÿ 2~naa�k; 0� : �39�

Note that, in contrast to the n�x; t� dependence on n�x0; 0� for all x06 x, the
~n�k; t�'s depend on the ~n�k; 0�'s only for the same value of k, i.e. sinusoidal
functions are here playing the same decoupling role normal modes play in

T. Radivoyevitch et al. / Mathematical Biosciences 149 (1998) 107±136 117



linear problems. Also note that when k � 0, Nc�t� � ~nc�0; t� and Eqs. (33)±(39)
reduce to the pool size solutions.

The preceeding equations express the Fourier transformed densities in terms
of the initial densities. Assuming low LET, the EtBr model speci®es the initial
fragment densities. The Fourier transform of the initial edge density is

~nat�k; 0� �
Z1

0

XN

j�1

2eÿikxu0�x; Sj�keÿkxdx

� 2
XN

j�1

ZSj

0

eÿ�ik�k�xk dx � 2k
k� ik

XN

j�1

�1ÿ eÿ�ik�k�Sj�: �40�

If the dose is large enough that each chromosome is hit at least once (the ®rst
high-dose condition), the initial edge sizes become exponentially distributed
since XN

j�1

�1ÿ eÿ�ik�k�Sj� � N ) ~nat�k; 0� � 2N
k

k� ik
) nat�x; 0� � 2Nkeÿkx:

�41�
The ®rst high-dose condition implies that there are 2N edge fragments and
kST ÿ N internal fragments at t � 0. The Fourier transform of the initial inter-
nal fragment density is

~naa�k; 0� �
Z1

0

XN

j�1

k�Sj ÿ x�eÿikxu0�x; Sj�keÿkx dx

� k2
XN

j�1

ZSj

0

�Sj ÿ x�eÿ�ik�k�x dx

� k2
XN

j�1

Sj

k� ik
ÿ 1

k� ik

ZSj

0

eÿ�ik�k�x dx

� k2
XN

j�1

Sj

k� ik
ÿ 1

�k� ik�2 �1ÿ eÿ�ik�k�Sj�

� k2 ST

k� ik
ÿ k2

N ÿPN
j�1 eÿ�ik�k�Sj

�k� ik�2
 !

: �42�

Assuming the ®rst high-dose condition,

~naa�k; 0� � k2ST

k� ik
ÿ Nk2

�k� ik�2 : �43�
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For internals to be exponentially distributed, the second high-dose condition,
kST ÿ N � kST , is also needed so that

~naa�k; 0� � k2 ST

k� ik
ÿ N

�k� ik�2
 !

� k2 ST �k� ik� ÿ N

�k� ik�2
 !

� k2 ST �k� ik�
�k� ik�2

 !
� kST

k
�k� ik� : �44�

The second high-dose condition implies that Naa�0� � kST while the ®rst high-
dose condition implies that Naa�0� � kST ÿ N . When both conditions hold, the
second high-dose condition implies that these di�erences in Naa�0� are negligi-
ble. Furthermore, since the second high-dose condition implies k� N=ST , we
can add N=ST to k and rede®ne it as the number of `genome interruptions' (re-
active DSBs plus pairs of natural telomeres) per base pair.

Eqs. (33), (34), (36) and (38), together with the initial conditions (40) and
(42) form, in principle, a full solution of the SSEB equations. Numeric evalu-
ation of these solutions will be illustrated in Section 7. Section 6 gives analytic
solutions for the high-dose limit in which the initial conditions have the simpler
form (41) and (44).

6. Exponential initial conditions

In applications, e.g. to PFGE measurements, numerical integration of
Eqs. (4)±(10) or numerical evaluation of Eqs. (33), (34), (36), (38), (40) and
(42) is needed. A useful check on numerical methods is the exact analytic solu-
tion in the high-dose case, which we now obtain using inverse Fourier trans-
forms.

The pool size solutions remain as given in Section 4, namely

Nat�t� � Nat�0�
Nat�0�jt � 1

; �45�

Naa�t� �
1
2
U�0�

U�0�jt � 1
ÿ

1
2
Nat�0�

Nat�0�jt � 1
� Naa�0�
�Nat�0�jt � 1��U�0�jt � 1� ; �46�

Ntt�t� � Nat�0�
2

1ÿ 1

Nat�0�jt � 1

� �
� Nat�0�

2
Nat�t�jt; �47�

Nr�t� � 1

2
ln

U�0�jt � 1

Nat�0�jt � 1

� �
: �48�

Assuming exponentially distributed initial fragment size distributions (®rst and
second high-dose conditions), the initial conditions ~nat�k; 0� � Nat�0�k=�ik � k�
and ~naa�k; 0� � Naa�0�k=�ik � k� yield
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~nat�k; t� � ~nat�k; 0�
�U�0� ÿ 2~naa�k; 0��jt � 1

� Nat�0�k=�ik � k�
�2Naa�0�ik=�ik � k� � Nat�0��jt � 1

� Nat�0�k
�U�0�jt � 1�ik � k�1� Nat�0�jt� �

Nat�t�k�t�
ik � k�t� ; �49�

nat�x; t� � Nat�t�k�t�eÿk�t�x; �50�
where

k�t� � k
Nat�0�jt � 1

U�0�jt � 1
and k�1� � k

Nat�0�
U�0� � k

2N
2kST

� N
ST
: �51�

The edge density is thus exponentially distributed with a shape parameter k�t�
that decays hyperbolically (i.e. as A=�Bt � C�) at early times but then converges
at t � 1 to N=ST , the ``natural genome interruption frequency'' of the organ-
ism, i.e. the inverse of the average chromosome length. Thus, at very large
times, the average edge fragment length approaches, but does not exceed, the
organisms average chromosome length. 4

For internal fragments,

~naa�k; t� � ~naa�k; 0�
�U�0�jt � 1���U�0� ÿ 2~naa�k; 0��jt � 1�

� Naa�0�k=�ik � k�
�U�0�jt � 1���2Naa�0�ik=�ik � k� � Nat�0��jt � 1�

� Naa�0�k
�U�0�jt � 1���U�0�jt � 1�ik � k�1� Nat�0�jt��

� Naa�0�
�U�0�jt � 1��1� Nat�0�jt�

� k�1� Nat�0�jt�
��U�0�jt � 1�ik � k�1� Nat�0�jt��

� �
� Naa�t� k�1� Nat�0�jt�

��U�0�jt � 1�ik � k�1� Nat�0�jt��

� Naa�t� k�t�
ik � k�t� : �52�

The inverse transform, by inspection, is therefore

naa�x; t� � Naa�t�k�t�eÿk�t�x; �53�
i.e. the internal fragment density also remains exponential with a time-depen-
dent shape parameter k�t�. Internals and edges have the same k�t� dependence.
Why is this? Note that when internals react with edges or internals they act to

4 Recall that the mean of an exponential p�x; t� � k�t�eÿk�t�x is 1=k�t�.
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drive the densities toward larger x values and thus smaller k�t� values. Although
internals drive themselves toward large x twice as fast as they drive edges, inter-
nals are also annihilated by edges twice as fast as edges annihilate themselves.
These e�ects appear to cancel so that edges and internals have the same k�t�.

Since the number of reactive DSBs per base pair,

ka�t� � U�t�=2

ST
� 1

ST

U�0�=2

U�0�jt � 1
;

is hyperbolic, the bilinear density shape parameter k�t� in Eq. (51) is not equiv-
alent to ka�t�. From its form as t!1, it appears that k�t� represents the num-
ber of genome interruptions per base pair, regardless of whether the
interruption is a reactive DSB or two natural telomeres. This interpretation
of k�t� is consistent with our de®nition of k as the initial number of reactive
DSBs per base pair since the second high-dose condition implies that the initial
number of genome interruptions approximately equals the initial number of re-
active DSBs. However, at large times, when the majority of reactive DSBs have
rejoined, the di�erence between k�t� and ka�t� is signi®cant.

Assuming edges and internals are initially exponential, the ring solution (34)
becomes

~nr�k; t� � 1

2
ln

U�0�jt � 1

�U�0� ÿ 2~naa�k; 0��jt � 1

 !

� 1

2
ln

U�0�jt � 1

�2Naa�0�ik=�ik � k� � Nat�0��jt � 1

� �
� 1

2
ln

�U�0�jt � 1��ik � k�
�2Naa�0�ik � �ik � k�Nat�0��jt � �ik � k�

� �
� 1

2
ln

�U�0�jt � 1��ik � k�
�U�0�jt � 1�ik � k�1� Nat�0�jt�

� �
� 1

2
ln

ik � k
ik � k�t�

� �
; �54�

nr�x; t� � 1

2x
eÿk�t�x ÿ eÿkx
ÿ �

; �55�

nr�x;1� � 1

2x
eÿ�N=ST �x ÿ eÿkx
ÿ � �56�

and, by similar arguments for bitelomeres, Eq. (38) becomes

~ntt�k; t� � Ntt�t� k
k� ik

� �
k�t�

ik � k�t�
� �

� Ntt�t� kk�t�
kÿ k�t�

1

ik � k�t� ÿ
1

ik � k

� �
; �57�
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ntt�x; t� � Ntt�t� kk�t�
kÿ k�t� eÿk�t�x ÿ eÿkx

ÿ �
; �58�

ntt�x;1� � Nat�0�
2

k�N=ST �
kÿ �N=ST � eÿ�N=ST �x ÿ eÿkx

ÿ �
: �59�

Focusing on just the ®nal solutions (t�1), note that in the limit of very high
doses (k�1) the misrejoined fragment number densities approach

ntt�x;1� � N 2

ST
eÿ�N=ST �x; �60�

nr�x;1� � 1

2x
eÿ�N=ST �x; �61�

as illustrated in Fig. 2. If we integrate the corresponding fragment mass densi-
ties

mtt�x;1� � xntt�x;1� � x
N 2

ST
eÿ�N=ST �x; �62�

mr�x;1� � xnr�x;1� � 1

2
eÿ�N=ST �x; �63�

from x � 0 to1 we obtain Mtt�1� � ST and Mr�1� � ST=�2N�, i.e. in the limit
of high-doses, the total ring mass approaches one-half the average chromosome
mass. Note that mass is not conserved (ST � �ST=2N� > ST ) because, in forming
the SSEB model, the ring term was dropped as an internal fragment degradation
¯ux (source term), but kept as a ring synthesis ¯ux (target term), see Eqs. (5) and
(7). If we include the term in both locations, the high-dose limit
Mtt�1� � ST ÿ �ST=2N� should result. The total ring and bitelomere masses
should not be confused with M�t�, the expected number of misrejoinings per cell.

7. Numerical results

We recently developed the Sax±Markov binary eurejoining/misrejoining
(SMBE) model in order to explain high dose (80±160 Gy) PFGE data as well
as moderate dose (1±5 Gy) chromosome aberration data [12]. The SMBE
model predicts a quadratic-linear M�1� dose-response in the range of 1±160
Gy. 5 In the following sections we shall use the SMBE algorithm 6 to compute
k in the EtBr model as a function of dose, i.e. k � M�1�=ST with M�1� taken
from the SMBE model.

5 Since the SMBE model ignores one-track action, the numerical results that follow will be limited

to doses greater than approximately 1 Gy.
6 The SMBE algorithm in C is available from radivot@musc.edu.
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7.1. Ring yields

To examine ring yields we: (1) formed k using the SMBE model at several
doses; (2) used the k's and the Sj's of male human cells during G0 to compute
the initial fragment pool sizes (Eq. (16)); and (3) used the initial pool sizes to
compute the ®nal misrejoined fragment pool sizes according to Eqs. (20) and
(22). The results (Table 1) suggest that for doses less than 5 Gy, Eqs. (16),
(20) and (22) are approximately

Nat�0� � 2kST � 2M�1�; �64�

Fig. 2. The ®nal bitelomeric fragment number density ntt�x;1� (a) has an exponential high-dose

limiting form. The density of small rings continues to increase with very high-doses (b).
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Naa�0� �
XN

j�1

k2S2
j

2
; �65�

Ntt�1� � Nat�0�
2
� M�1�; �66�

Nr�1� � Naa�0�
Nat�0� � M�1�

4

XN

j�1

Sj

ST

� �2

: �67�

The ring dose-response is thus predicted to equal the bitelomere dose-response
multiplied by a constant 1

4

PN
j�1 Sj=ST

ÿ �2
that increases with the dispersion of

the chromosome sizes. At one extreme, when one chromosome approaches size
ST and all others approach zero, the proportionality converges to 1

4
. At the oth-

er extreme, if all chromosomes have the same size, the proportionality becomes
1=4N . For human chromosomes the latter of these extremes approximates the
full expression in (67), underestimating the ring yields by only about 10%.

The results shown in Table 1 indicate that rings are almost completely neg-
ligible (see also Fig. 2). However, it must be kept in mind that SSEB ignores
proximity e�ects due to chromosome sites (the localization of interphase chro-
mosomes to nuclear subdomains) and therefore will underestimate the true
number of rings [16]. 7 If each chromosome is con®ned to exist in one of gc nu-
clear subdomains, and if the chromosome size distribution within each subdo-
main is still well represented by the mean size for the organism, then an
extension of our arguments gives the estimate Nr�1� � gcM�1�=4N . This es-
timate is in excellent agreement with an estimate obtained by very di�erent,
Monte Carlo methods [17]. The Monte Carlo methods, combined with chro-

Table 1

The initial and ®nal fragment pool sizes in human (male) cells resting in G0 were computed as de-

scribed in the text. The SMBE parameter values used to compute M�1�, and thus k � M�1�=ST ,

were p � 0:33, G � 40 and g � 375, where p is the fraction of DSBs that are active, G is the yield in

DSBs per Gy per human cell, g is the number of DSB sites within the nucleus and M�1� is the

expected number of misrejoinings (reactive DSBs) per cell [12]. Note that the ®rst high dose con-

dition (all chromosomes hit at least once) is satis®ed at D � 50 Gy and that the second high dose

condition (many times more internals than chromosomes) is satis®ed at D � 100 Gy

Dose in Gray 1 2 5 10 20 50 100

M�1� 0.3 1.2 7.3 27.4 96.3 427.7 1099.2

k Mbÿ1 0.00005 0.00019 0.0012 0.0043 0.015 0.067 0.173

Nat�0� 0.62 2.41 13.37 39.64 75.93 91.62 92.00

Naa�0� 0.001 0.019 0.65 7.58 58.35 381 1053

Nr�1� 0.002 0.008 0.046 0.162 0.465 1.117 1.587

Ntt�1� 0.3 1.2 6.7 19.8 38.0 45.8 46.0

7 The SSEB model also ignores the fact that small internals should close faster than large

internals. The SMBE model accounts for DSB sites (the localization of DSB free ends to nuclear

subcompartments) but not chromosome sites.
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mosome aberration data, indicate gc is about 13 [17]. Applying this correction
factor of 13 in Table 1, and comparing Nr�1� with Ntt�1� shows that, even
with proximity e�ects taken into account, the neglect of a ring production
source term in Eq. (4) is a reasonable approximation.

7.2. Flow karyotypes

Experimentally, ¯ow karyotypes have been used to study DNA fragment
sizes after irradiation and misrejoining [10]. For doses of approximately 5
Gy, the ®nal number density can be readily separated into a misrejoined signal
and a eurejoined signal. These separate signals have been used in the past to
form two separate misrejoining estimates ± see the peak reduction algorithm
(PRA) and background number algorithm (BNA) developed by Dietzel et al.
[10]. We now discuss potential applications of the present model to ¯ow karyo-
type experiments.

In Section 6 we derived analytic SSEB solutions using the high dose limiting
form of the EtBr model ± exponential initial conditions valid at doses greater than
about 100 Gy for humans, see Table 1. At lower doses the exact form of the
EtBr model must be used. Though it may be possible to solve the SSEB model an-
alytically using the exact form of the EtBr model as the initial condition, a numer-
ical approach is preferable because it is more general, i.e. any initial conditions
can be speci®ed. The SSEB solutions can be evaluated numerically as follows:
1. Use the EtBr model to convert nd�x; 0ÿ� just before irradiation to nd�x; 0��,

nat�x; 0�� and naa�x; 0�� just after irradiation. The value of k in the EtBr
model depends on dose according to the SMBE model, i.e. k � M�1�=ST .

2. Take fast Fourier transforms (FFTs) of nat�x; 0�� and naa�x; 0�� to form
~nat�k; 0�� and ~naa�k; 0��. 8

3. Carry out pointwise k-vector multiplications, additions and divisions
according to the formulas provided in Section 5. Recognize that U�0� �
2M�1� from the SMBE model.

4. Inverse transform the resulting k-vectors to yield the x vector solutions.
We executed this procedure for human chromosomes irradiated with doses of

1, 5, 10, 20 and 50 Gy using Dx� 1 Mb and vector lengths of 1024. In Fig. 3 we
see that the a�ect of 1 Gy is indistinguishable from unirradiated controls. Thus
¯ow karyotypes are not likely to be useful at doses less than 1 or 2 Gy. Figs. 4
and 5 provide plots of the initial and ®nal fragment densities, respectively, for
doses of 5, 10, 20 and 50 Gy. Comparing the misrejoined karyotype at 50 Gy
with its high dose limit in Fig. 2(a), we see that the shape of the misrejoined frag-

8 FFTs require evenly spaced samples preferably padded with zeros to a power of two. The high

dose limit ntt�x;1� � �N2�=�ST �e�ST �=�N�x suggests that the vector length 2k should be chosen such

that 2kDx lies between 5 and 10 times the average chromosome size ST =N .
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ment signal continues to change with dose, even at very high doses. The SSEB
model o�ers a means of converting this shape information into estimates of the
number of misrejoined DSBs per Mb, i.e. SSEB solutions can be ®t to high-dose
¯ow karyotypes to arrive at distribution-based misrejoining estimates.

7.3. PFGE experiments

In other experiments involving pulsed-®eld gel electrophoresis (PFGE) to de-
termine fragment sizes, one uses restriction enzymes to cut the DNA of the hu-
man genome at speci®c sites, thus creating DNA fragment sizes small enough to
enter pulsed-®eld gels [18,19]. In these experiments, the DNA is digested after the
cells are killed, i.e. just before separation on the pulsed-®eld gel. We shall refer to
DNA fragments that result from restriction-enzyme cutting of unirradiated
chromosomes as `cut-somes'. Though cut-somes are much smaller than chromo-
somes, the size changes cut-somes undergo as a result of irradiation and misre-
joining can be modeled with the same formalism as in the case of chromosomes.
This rather surprising feature simply re¯ects the fact that a cut-some also has
two `terminals' (ends) that, like telomeres, are inert during the process of DSB
induction and misrejoining. The previous sections thus apply to cut-somes by re-
placing `telomere' with `cut-some terminal' and `chromosome' with `cut-some'.

We shall consider experiments using restriction enzymes that have compar-
atively long recognition sequences for which the average cut-some size is sever-
al Mb [2]. Since the number of cut-somes is typically quite large, a description
of the cut-some density in terms of Dirac delta functions is no longer appropri-

Fig. 3. A dose of 1 Gy produces an initial fragment size distribution indistinguishable from a dose

of 0 Gy. Male human G1 cells were used in conjunction with the SMBE model as in Table 1.
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ate. Instead we shall treat cut-some distributions as continuous density func-
tions. To convert the cut-some density at t � 0ÿ, which we denote by
nd�s; 0ÿ�, to initial edge, internal and delta densities at t � 0� (just after acute
irradiation), we can use a modi®ed form of the EtBr model in which the sum
over N chromosomes is replaced by an integral over the density of cut-somes.
The result is that Eqs. (9) and (10) are replaced by

Fig. 4. The initial fragment size distributions at t � 0� are illustrated here for acute low LET doses

of (a) 5, 10, and (b) 20 and 50 Gy, k � M�1�=ST as in Table 1.
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nat�x; 0�� � 2keÿkx

Z1
x

nd�s; 0ÿ� ds; �68�

naa�x; 0�� � k2eÿkx

Z1
x

snd�s; 0ÿ� dsÿ k2eÿkxx
Z1

x

nd�s; 0ÿ� ds; �69�

Fig. 4. (continued)
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nd�x; 0�� � eÿkxnd�x; 0ÿ�; �70�
where k � M�1�=ST is again de®ned as a function of dose by the SMBE mod-
el. The integrals in Eqs. (68)±(70) can also be expressed as

Fig. 5. The ®nal SSEB fragment size densities were evaluated numerically using the initial fragment

size densities of Fig. 4. The `background' density between the peaks is the ®nal misrejoined frag-

ment density, i.e. the sum of the ®nal ring and bitelomere densities. The maximum of this ®nal mis-

rejoined density is seen to move toward smaller x as dose increases between 20 and 50 Gy,

consistent with Fig. 2.
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Z1
x

snd�s; 0ÿ� ds � ST ÿ
Zx

0

snd�s; 0ÿ� ds; �71�

Z1
x

nd�s; 0ÿ� ds � N ÿ
Zx

0

nd�s; 0ÿ� ds; �72�

Fig. 5. (continued)
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where N is the expected number of cut-somes per cell. These forms are useful in
numerical evaluations.We next show that misrejoining estimates cannot be ob-
tained from cut-some size distributions that are exponential (as would occur if
the cut-somes are small compared to chromosomes and the recognition se-
quences are randomly located in the genome). We begin by substituting the
form nd�s; 0ÿ� � k0ST k0eÿk0s into Eqs. (68)±(70) to obtain the initial state of
the SSEB model

nd�x; 0�� � k2
0ST eÿ�k0�k�x; �73�

nat�x; 0�� � 2k0ST keÿ�k0�k�x; �74�
naa�x; 0�� � k2ST eÿ�k0�k�x; �75�

where k0ST � N . 9 Since these densities are exponential, the system can be
solved analytically with the following substitutions in Eqs. (56) and (59): k be-
comes k� k0; Nat�0� becomes 2�k0ST �k=�k� k0�; and N=ST becomes k0. The re-
sults are then

nr�x;1� � 1

2x
eÿ�N=ST �x ÿ eÿkx
ÿ � �76�

� 1

2x
eÿk0x ÿ eÿ�k�k0�xÿ �

; �77�

ntt�x;1� � Nat�0�
2

k�N=ST �
kÿ �N=ST � eÿ�N=ST �x ÿ eÿkx

ÿ � �78�

� k2
0ST eÿk0x ÿ eÿ�k�k0�xÿ �

; �79�
which implies that

nd�x;1� � ntt�x;1� � nd�x; 0�� � ntt�x;1�
� k2

0ST eÿ�k0�k�x � k2
0ST eÿk0x ÿ eÿ�k�k0�xÿ �

� k2
0ST eÿk0x � nd�x; 0ÿ�: �80�

Calculations using 1=k0 � 1 Mb and 80 and 160 Gy indicate that the ring den-
sity is negligible (in any case, rings do not enter pulsed-®eld gels unless they are
small [20]). Eq. (80) thus states that exponentially distributed cut-somes pro-
duce ®nal number densities that are indistinguishable from eurejoined densi-
ties, i.e. irradiated cells will appear no di�erent from unirradiated cells. To
obtain misrejoining information from PFGE experiments conducted at large
times, the model thus suggests that cutters should be as non-random as possi-
ble, the extreme being that all fragments have the same size.

For a non-random cut-some distribution, suppose nd�x; 0ÿ� is Gaussian with
mean l� 3.2 Mb and standard deviation r� 0.3 Mb, where we chose the mean
to match a particularly important cut-some [2]. Applying Eqs. (68)±(70) numer-

9 The sum of these initial densities equals ��k0 � k�ST ��k0 � k�eÿ�k0�k�x, i.e. the original cut-some

distribution has a dose equivalent which adds to the external dose.
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ically to this cut-some density yields an initial state fnat�x; 0��, naa�x; 0��,
nd�x; 0��; 0; 0g as a set of three vectors (we used Dx � 0:01 and vector lengths of
1024). The steps outlined in Section 7.2 were then used to compute the SSEB ®nal
state f0; 0; nd�x;1�; nr�x;1�; ntt�x;1�gwhere nd�x;1� � nd�x; 0��. The sums of
these initial and ®nal densities are plotted in Fig. 6(a) and (b), respectively.

Suppose instead that the cut-some distribution is broadened to a Gaussian
with l� 3.2 Mb and r� 2 Mb. We then obtain the ®nal number densities
shown in Fig. 7. Compared to Fig. 6 we see that broader (and thus more real-
istic) cut-some distributions manifest their misrejoinings through peak shifts to
smaller fragment sizes, rather than decrements in peak height as shown in
Fig. 6 for narrow bands. For this situation an approach to PFGE measure-
ments analogous to Dietzel's ¯ow karyotype approach would break down be-
cause peak (unperturbed or eurejoined) and background (misrejoined) signals
can no longer be separated by inspection. The SSEB model, however, can still
be used because it only requires that the sum of the signals be known. Thus a ®t
of nd�x; 0�� � ntt�x;1� to observed ®nal densities will yield distribution-based
estimates of k, the expected number of misrejoinings per base pair.

8. Discussion

8.1. Mathematical results

Time integrals of the non-linear integro-di�erential SSEB model were ob-
tained using Fourier transform techniques. For low LET doses high enough
to satisfy both high-dose conditions (Section 6), closed form analytic solutions
showed us that: (1) edges and internals initially exponential, remain exponen-
tial, their ®nal state mean values approaching the average chromosome size;
and (2) in the limit of very high-doses, the ®nal ring mass approaches one-half
the average chromosome mass. At realistic doses the exact form of the EtBr
model was used as the initial state of the SSEB model and numerical solutions
were obtained using very e�cient FFT methods.

8.2. Rings

The results on rings show that one of the model idealizations, neglecting ring
source terms in Eq. (5), is appropriate for the doses of interest. For mammalian
chromosomes at doses between 1 and 5 Gy (cut-some doses can be much high-
er), the yield of rings is predicted to be a constant times the bitelomere yield,
the proportionality constant depending on the distribution of chromosome siz-
es as well as the localization of interphase chromosomes to nuclear subdo-
mains. These results on rings are e�ectively identical to results obtained by a
very di�erent approach using Monte Carlo simulations [17].
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8.3. Flow karyotype assays

In Section 7.2 we examined potential SSEB applications to ¯ow karyotype
data in the range of 5±50 Gy. We suggest that such data could be informative
about DSB rejoining mechanisms. Given such data, the SSEB model could be
applied to form distribution-based estimates of the total misrejoinings. One ad-
vantage SSEB has over Dietzel's PRA and BNA methods [10] is that it does not
assume that only a negligible number of chromosomes have more than one

Fig. 6. Gaussian distributed (l � 3:2 Mb, r � 0:3 Mb) cut-somes at t � 0ÿ were converted to SSEB

initial conditions at t � 0� (a) using the continuum form of the EtBr model (Eqs. (68)±(70)) with

doses of 0, 80 and 160 Gy. In the corresponding ®nal densities (b) misrejoining results in peak re-

duction and increases in background.
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misrejoining, an assumption that limits Dietzel's algorithms to doses less that
10 Gy if human chromosomes are used (Table 1).

The utility of the SSEB approach is seen quite clearly for doses on the order
of 50 Gy (Fig. 5(b)bottom) where all the peaks have vanished and the number
of misrejoined fragments stays roughly constant with dose (it saturates at the
number of chromosomes). In this case PRA breaks down because there are
no peaks and BNA breaks down because the total background between the
peaks no longer changes with increments in dose. Meanwhile, shape changes
in the misrejoined distribution can still be detected, the maximum of the den-
sity continuing to move toward smaller fragment sizes as dose increases. The
SSEB model can capture these changes in the form of misrejoining estimates.
Note that as the high dose exponential limit is approached, SSEB fails to detect
any further misrejoining because there are no changes in the ®nal density with
increments in dose (unless ring formation kicks in), at lower doses Dietzel's as-
sumptions apply and, at least for chromosomes, the advantages of SSEB di-
minish with decreasing dose.

8.4. PFGE data

For cut-somes, the assumption that two or more DSBs on one cut-some are
improbable will be valid to high doses, but there is a di�erent limitation for an
approach analogous to that of Dietzel et al.: a very restrictive assumption that

Fig. 7. For a Gaussian cut-some distribution with l � 3:2 Mb and r � 2:0 Mb, misrejoining man-

ifests itself mostly through shifts in the ®nal density toward smaller x. Compare this to the right

panel of Fig. 6 where peak reduction dominates the dose-response.
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cut-some sizes have a peak pattern as in Fig. 6. This limitation is relaxed with
the SSEB approach because the separability of eurejoined and misrejoined sig-
nals is not required ± SSEB ®ts to their sum while PRA and BNA requires each
of the signals separately. The SSEB approach is thus more robust with respect
to the amount of tolerance it has for randomization in the cut-some distribu-
tion. Overall, with low levels of randomization (Fig. 6) both methods can de-
rive misrejoining estimates, at intermediate levels (Fig. 7) only the SSEB
approach can estimate misrejoining, and when complete randomness is reached
(exponentially distributed cut-somes) both methods fail.

Since cut-somes are much smaller than chromosomes, very high doses (over
80 Gy [2]) are needed to create readily detectable damage. At such doses, cel-
lular DSB rejoining mechanisms may change for any of several reasons, a few
of which may be: altered chromatin structure, saturated rejoining enzymes,
changing redox state, induced apoptosis, etc. One must therefore be cautious
when applying models based on cut-some data to lower doses.

8.5. Summary

It is possible to predict systematically the shape of size distributions for mis-
rejoining DNA fragments. This size information is available in many experi-
ments and the theoretical curves given here should improve numerical
estimates of such basic quantities as the total number of misrejoinings at a giv-
en dose. This is the kind of quantitative information needed for understanding
DSB misrejoining and, ultimately, for extrapolating laboratory data on DSBs
to carcinogenesis risk estimates.
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